Diagra Documentation

February 2010

ReportLab Europe Ltd

Thornton House, Thornton Road
Wimbledon

London SW19 4ANG, UK

Diagra Documentation $Revision: 42327 $

CONTENTS
1 Overview
1.1 About This Document
1.2 What is Diagra?
1.3 Other Documentation
1.4 Limitations and Bugs

2 Installation

3 Using the Drawing Editor to Create Static Charts
3.1 Introduction to the Drawing Editor

3.2 Creating a New Project

3.3 Adding Widgets

3.4 Setting Widget Attributes

3.5 Saving Y our Project

3.6 Exporting to Different Formats

3.7 Opening Existing Files

3.8 Adding Primitives - and another way to add widgets
3.9 Miscellaneous Features

4 Working with Charts

4.1 BongoCorps's Drawing Classes

4.2 Working with Colours

4.3 Working with Fonts

4.4 Working with Collections

4.5 Formats and Formatters: Decimal Formatter, NA_Label and Format Strings

5 Creating Data Aware Charts

5.1 Introduction to DataAwareDrawings. Plotmode, fileNamePattern and outDir
5.2 Setting the Data Source

5.3 Setting the Data Associations
5.4 A practical example: Slidebox.py
5.5 Running the resulting scripts

5.6 Example 2: Dotbox.py

5.7 Example 3: Horizontalbarchart.py
5.8 Example 4: Verticalbarchart.py
5.9 Example 5: Linechart.py

5.10 Example 6: SectorCylinderChart

6 More about Using Axes
6.1 VaueAxis
6.2 BongoY VaueAxis

Page 2

Diagra Documentation $Revision: 42327 $

7 Moreon Data Sour ces

7.1 Making a Simple Chart Data Aware

7.2 Changing the Data Associations on an Existing Chart

7.3 Data Association Types:. scalar, vector, matrix, tmatrix and rowmap

8 New Drawing Editor Features
8.1 Test Mode

8.2 Errors

8.3 Command Line Arguments
8.4 Changing Environments

8.5 The Diagnostics

9 Using 'Knockout'
9.1 'Knockout' - what it is, and why use it

Page 3

Diagra Documentation $Revision: 42327 $

1 Overview

1.1 About this document

This document started out as specialised documentation for alarge customer's in-house systems which used
Diagra and the Diagra Drawing Editor. It isin the middle of being sanitised and made more generic to become
the Diagra documentation. Thisisawork in progress.

Assuch, it will be an overview of using the Drawing Editor with some very specific examples. It will cover the
Drawing Editor (guiedit) and some other software - how to install it and how to use it to create charts. It is not
intended as a complete set of documentation for every chart and every method for each chart. See the section on
'Other Documentation' (below) for info on how to get that.

1.2 What is EPSCHARTS?

EPSCHARTS was the original name for what has now evolved into Diagra and the Diagra chart server. You
may still see the name in some code and in afew other placesin this manual. Thisis a hangover from previous
versions - it is not a separate product.

1.3 What is Diagra?

Diagrais aprocess for batch-generating charts - originally in Encapsulated Postscript but now in many other
formats as well. This has evolved through a number of iterations.

The current iteration is hopefully the right long-term workflow and goes like this:

= Thereportlab/graphics package contains code to let programmers generate standard chart types in several
formats

= ReportLab has also written some special chart types for various customers with extra features
= Programmers define some base "Drawing" classes including these charts.

= Designersuse a GUI tool (the Diagra Drawing Editor) to create several variants of these base classes. These
specify chart formatting attributes (size, color, label style etc.) and also data-processing attributes (input data
file name, output directory, file format (not just EPS). They save these as special python modules.

= When you run one of these modules (e.g. with adouble-click), it looks for a data source (CSV file or ODBC
database), reads it, and generates a batch of charts. These will ook like the prototype, except that the data for
each chart is of course different.

1.4 Other Documentation
XXXXXXxX.epschar ts.pdf and updatedoc.py

The most up-to-date and complete documentation on the various charts on your system will be the
documentation that is autogenerated.

There isaprogram called updatedoc.py (which should be in your xxxxxxxx/epscharts directory). When you run
this, it will run over your epscharts directory and create a document called 'xxxxxxxx.epscharts.pdf' in your
documentation directory.

This document contains all the classes (i.e. charts) that are available to you on your machine, along with a brief
description of what it does, the attributes you can set for it (‘Public Attributes) and an example of what one
looks like.

Other documents

Both the core ReportL ab toolkit and the ReportL ab graphics package come with their own documentation. That
for the core toolkit is called 'userguide.pdf’, and that for graphicsis called 'graphguide.pdf'. Both these files
should be in the reportlab\docs directory under your Python directory.

1.5 Limitations and Bugs

At the time of writing we hope we now have an overall process which makes sense. However, each chart has
dozens of different attributes which need debugging. We therefore expect a period of rapid change while this
stabilizes and before al of the attributes work.

Page 4

Diagra Documentation $Revision: 42327 $

Unfortunately, some of these changes (especially if we completely delete some attribute) will means 'starting
again' with existing drawing files.

Occasionaly, the drawing editor may get your settings confused (e.g. forcing you to have afull screen for your
editor screen). If thisisthe case, find the file called _guiedit.ini (which should be in the same folder as the
drawing editor program itself - guiedit.py). Deleteit. Thiswill be regenerated the next time you start up the
Drawing Editor, and should clear your problem.

Page 5

Diagra Documentation $Revision: 42327 $

2 Installation

Please follow http://www.reportlab.com/software/installation/ for the most up-to-date instructions on installing
our libraries along with their dependencies.

= Optional step (for Windows only): Creating a shortcut to the Drawing Editor

If you will be using the Drawing Editor on aregular basis, you should put a shortcut to it on your desktop to
make life easier. To do this, right click on your desktop and 'New' then 'Shortcut'. Then copy thisline
c:\Python26\pythonw.exe c:\python26\Lib\site-packagesirlextralgraphics\guiedit\guiedit.py and paste it into
the location text box that appears in the dialogue, and save.

Double clicking on thisicon will now have the same effect as double-clicking on the original: it will start up
the Drawing Editor, but without having to navigate to it in Windows Explorer. And the change to the target
in the Properties box means that it doesn't open an extra shell window when it runs.

Page 6

Diagra Documentation $Revision: 42327 $

3 Using the Drawing Editor to Create
Static Charts

3.1 Introduction to the Diagra Drawing Editor

The Diagra Drawing Editor (guiedit.py) isthe graphical editor for EPS charts. If you look in your 'rlextra
directory (under Python22), you should find a'graphics directory which should in turn have a 'guiedit'
subdirectory. Inside that isthe GUI Editor program - 'guiedit.py'. Double-clicking on that should give you
something like this:

ReportLab Drawing Editor 10| =|
File Optionz Actions ‘Windows Help

Reportlab GUI Drawing Editer

Configuration Starting

Canfiguration Finizhed

making ligk of known objects

finizhed list of _known objects 27 52"

Hb =130 HF=254 HC=432 #/N=517 #W1=477

From the top, the elements of this display are:

= Title bar
Just like any other program, this is where the name of the program is displayed, and which contains the
Minimize, Maximize and Close buttons.

= Menu bar
Thisisthe area which contains drop-down menus - click on 'Fil€, 'Options, 'Actions, "Windows or 'Help' to
see the associated menu. Also, notice how if you leave the cursor over one of the menu titles, a floating box
appears with some text telling you what it is (you might know these as 'tooltips if you are a Windows user,
or 'balloon help' if you are aMac user). Most buttons and fields in the Drawing Editor have these. If you find
them annoying, you can turn them off by using the "Tooltips off'/'Tooltips on' item in the Options menu.

=« Main Window
The large black area which currently has the words 'ReportLab GUI Drawing Editor' in it isthe 'Main
Window'. Thisisthe area which will contain the graphical displays of your charts.

= Log Window
The Drawing Editor keeps alog of its actions. These are displayed in their own window (the Log Window).
Thiswindow can be turned off if you don't find them useful or to make more room on screen. Y ou can do

Page 7

Diagra Documentation $Revision: 42327 $

this by going to the 'Windows menu and selecting 'src window on', which will then toggle to off (and change
colour from green to red).

Some other points to notice before we move on to doing something useful using the Drawing Editor. The frame
the contains all these other windows is resizable. If you move the cursor to the left or right hand edges of the
Drawing Editor window, it will change into an horizontal arrow with arrowheads at either end. When the cursor
looks like this, you can click-and-drag to move the edges out horizontally. Similarly, when you place the cursor
over the top or bottom edges of the window, it changes to a vertical arrow with arrowheads at the top and
bottom. This means that you can click-and-drag to move the edges vertically. And when you place it over the
bottom left hand corner, it changesto adiagonal arrow - you can then move it horizontally and vertically at the
same timeto resize it in both directions.

Thereisathin line over the divider between the main window and the log window (just over where it says
'Log’). If you move the cursor over it, you see it changes to the vertical arrowheads. Y ou can click and drag to
shrink or grow thiswindow vertically. If you look at the line, it has a small square box or button almost at the
right hand edge. If you notice a box like this on any other divider in the Drawing Editor, then you can
click-and-drag it to resize the windows it borders.

From the Options menu, select the item 'Searched Packages'. Y ou should get adialogue that looks like this:

Packages ko Sea |

Packages

reportlab. ik
reportlab
Tlestra

vl add del |i-
Cancel |

Thislists the packages that the Drawing Editor searches to find charts. Y ou may have to add a package (i.e. a
directory which contains the reusable Python code to create the charts, aswell asafilecaled _init__.py) if you
cannot find the charts that you need (but you know they exist on your hard disk). 'Package Exclusions from the
same menu provides you with asimilar dialogue which does the same thing for the excluded packages - those
that are deliberately ignored when the packages are being imported.

Aswell as the immediate function of this pop-up, it's worth noting the two small coloured arrows at the left and
right. Whenever you see arrows like thisin adialogue in the Drawing Editor, you will know that they have to do
with navigation. In this case they point up and down - if you have clicked to highlight a package, these up and
down arrows move you up and down the list. Aswe will see later, they can also be used for navigating the
attributesin alist aswell as just moving up and down thelist itself.

3.2 Creating Static Charts: Creating a New Project

The 'New' item from the File menu allows you to create a new Project. Thiswill pop-up a dialogue which
prompts you for the name of the project, and allows you to chose the name of the class from which it will be
inheriting.

Page 8

Diagra Documentation

$Revision: 42327 $

MNew Project Parameter

File

Options Actions

wiindaws

=0l x|

Help

Mew Class Mame |NewTelerawing

Base Clags Mame?

IDrawing

BOWNGO e
CylinderBarStacked

DatatywareDrawing

DatatywarePielrawing

DiagnozsticDrawing

Drawing

GridLineFlatDrawing

LegendedPielrawing
reportlab. graphics. chartz.barchartz. S am
rlextla.glaphics.guiedit.sampledrawings.!LI

< | i

Log

=477

(o]

Cancel

Asyou can see from thisillustration, we'll be using the class called 'Drawing' as the basis for our new static
chart. Theillustration below shows you what we get when we click on the OK button to open it up. This doesn't
look very exciting, since the Drawing class just gives us a blank canvas to work on. All of our static drawings
will inherit (directly or indirectly) from this class. Y ou should also notice some more windows appearing - more
on thosein afew paragraphs.

Page 9

Diagra Documentation

$Revision: 42327 $

3.3 Adding Widgets

ReportLab Drawing Editor 1Ol =]
File Options Actions Windows Help
File: <unknown, class NewT estDrawingl... Drawing)

s
=]

| | 3
IO

zelf Aftrs

transform = (1, 0O, 0O, 1, 0O, O]
width = 400
ﬂbackground =Maone ;'J
Source
apply[Drawing.__init__ [zelf width height]+args kw] ﬂ
-

We can add contents to this drawing. In the 'Actions menu there is amenu item called 'Add Widget'. A widget
is areusable shape that can be 'drawn’. Widgets can be as simple or as complex as you want. Y ou can create

your own widgets, but in most cases you will be modifying existing, pre-created widgets.

If you go 'Actions and select ‘Add Widget', you should get a dialog appearing that |ooks similar to the one
below. For the purposes of this example, scroll down it until you see 'Pie’ and click onit. Y ou should see 'Pie
appear in the box labelled 'Widgets?. Then give it aname - enter 'NewPie' in the box |abelled ‘New Widget

Name'.

Add New Widget i E
Mew Widget Mame INewF‘ie

Widgets?

|Pie

MoEntry d
MoSmoking

MormalD atexl/ alueduxis

Motdllowed

ODBCD ataSource

Octagon J
Path()

Pie

PalyLine()

Palygon(] j

1 | ¥
Cancel |

Asyou can see (below), as well asthe main and log windows we aready had when we started the Drawing
Editor, we now have three new windows: the 'Attributes window (labelled 'self Attrs), the entry field and the
'Source' window. If you can't see any of these windows, click on the dividers to resize things until you do (e.g.,
you may have to grab and drag the bottom edge to see the Log window).

Page 10

Diagra Documentation $Revision: 42327 $

Reportl ab Drawing Editor o] B34
File DOptions Action: Windows Help |
File: <unknowns, clazs HewT estDrawing[... Drawing)
=
-
| H
_F

zelf Attrs

MNewPie = Pie|(Widget)

hackground = None

height = 200
transform = (1, O, O, 1, 0O, 0O}
width = 400

*|NewFie = Pielwidget)

DL

Source

L

applyCrawing.__init___[zelf width height]+argz kw]
zelf,_add(zell Fie(].name="MewPie’ validate=Mone, desc=H
one|

el

Log

making list of known objects
finizhed lizt of _known objects 32 0"
Hhd=130 HF=252 HC=432 HWN=517 #WI=476

Ea =

The attributes window shows alist of attributes that this class has. The 'self’ in 'self Attrs refers to the fact that
these attributes are for the base class (rather than for one of its attributes). Some of these attributes themselves
have attributes that you can change. For example, double click on the line that says 'NewPie = Pie(Widget)'. The
'self Attrs' changes to 'self.pieChart Attrs' to show that you are now changing the attributes for the pie chart
rather than for the class as awhole, and the list of attributes displayed changes to those for the pie chart
(NewPie).

If you have finished with the attributes for NewPie, you can go back to the attributes for the whole chart by
clicking on the red up-arrow on the right hand side of the entry field. The blue down-arrow on the | eft takes you
down alevel (‘drilling down’) if that attribute has attributes that you can change. Double-clicking on a class with
attributes does the same as the blue arrow, but double clicking on the red text with the class name ('self Attrs)
does the same as the red up-arrow (i.e. takes you up alevel).

The entry field shows the attribute you have currently selected from the Attribute window. Y ou can make
changes in this one-line window, and these will be reflected in the Attributes window as soon as you hit enter.
These changes also show up in amore graphical way in the main window, so you can see exactly what those
changes do to the look of a chart.

The source window shows the Python source code. This may be especially useful to you if you area
programmer, but is also very useful if you're not. Looking in the source window, you should see aline that looks
like this:

sel f. _add(sel f, Pie(), name="' NewPi e', val i dat e=None, desc=None)

Thisisthe line the actually adds the widget for the Pie chart. If you right click on it, you should see another
dialog pop up:

Page 11

Diagra Documentation $Revision: 42327 $

edit: Iself._add[self,F'ie[],name='N ewPie' validate=Mone desc=Mane]

Remove | Cancel |

This alter edit dialog is very handy. It allows you to alter the text (to do things such as changing the name of a
widget - if you decided to call it PieChart rather than NewPie), and to totally remove an object that you have
added by mistake. If you do want to close the source window, go to the Windows menu and select 'Src window
on' - thiswill toggleit to off. Y ou can awaystoggle it back on later.

3.4 Setting Widget Attributes

By default, the width and height for this pie are 100x100. Thisis pretty small - but you can change this. If you
have clicked on the line that said 'NewPie = Pie(Widget)' in the attributes window, you should see a scrollable
list of all the attributes for the pie appear in the Attributes window. Click on the line that says 'height = 100" -
this should now appear in the entry field below it. Y ou can click in this and edit it. Change the 100 into 200. Do
the same for the width attribute. The chart in the main window should now be bigger. Y ou can also change the x
and y attributes - these are the x and y co-ordinates for the bottom left hand corner of the widget. Change the x
to 25, and they to 10 - you'll see why later.

Itisdtill just acircle though - it has no datato display. Most of our charts (except for a couple of extremely
simple ones) have an attribute called ‘data’. Our NewPie is no exception. The data attributeis alist, and
currently it just contains the number 1. Y ou can change this by clicking on the line that says 'data’ in the
attributes window, and then editing it in the text entry box. The data must be alist (i.e., be contained in square
brackets), and it must be separated by commas. It doesn't matter if you use whitespace between the elements or
not. So,

[23]

[1, 2, 3]
[2,3,4]

are dl valid lists for the data attribute, but these are not:

(1,2,3)

1,2,3

'1,2,3
Most widgets will have attribute checking switched on. This means that they check if what you are enteringisa
valid data type for that attribute. If you try and enter an invalid list for data - or if you try and enter something
that isn't suitable for any other attribute, say a string instead of a number - you will get a'traceback’. The one for
this attribute would look something like this:

Traceback (nost recent call last):
File "\rlextra\lgraphics\guiedit\guiedit.py", line 920, in attrChange
sel f.redraw(acti on='redraw)
File "\rlextra\graphics\guiedit\guiedit.py", line 718, in redraw
sel f. newDr awi ng()
File "\rlextra\graphics\guiedit\guiedit.py", line 826, in newDraw ng
sel f. proj ect. get Sanpl e()
File "\rlextra\lgraphics\guiedit\guiedit.py", line 392, in getSanple
exec "¥\n_x=%()\n" % (self.buildText(),self.classNane) in |ocal s()
File "<string>", line 14, in ?
File "<string>", line 13, in __init__
File "reportl ab\ graphi cs\ wi dget base. py", line 49, in _ setattr__
File "reportlab\lib\attrmap. py", line 72, in validateSetattr
AttributeError: |llegal assignment of '23'" to 'data' in class Pie

Thelast lineisthe most important - that's the one telling you what has gone wrong. In this case, you'd have
entered '23' instead of 23]

Width, height, x, y and data are common attributes for most of the widgets you will be working with.
Simplifying Attributes

When you change attribute properties you will see lines being added to the source code in the source window.
When you are assigning a new value to an attribute that you have already modified, the new attribute
assignment is simply appended to the code, with the last assignment being the one that is effected. An example
of thisin the screen shot below showing multiple attempts to set the chart.height.

Page 12

Diagra Documentation

$Revision: 42327 $

#Autogenerated by Reportlab guiedit do not edit
from reportlab.graphics.samples.line_chart import LineChart
from reportlab.graphics.shapes import _DrawingEditorMixin

class LineChart_000{_DrawingEditorMixin,LineChart):
def __init_ (self,width=400,height=200,*args,**kw):
LineChart.__init_ (self,width

(height,*args, **kw)

self.height = 300

self.width = 500

self.chart.height = 180

self.chart.width = 255

self.chart.height = 200
self.chart.strokeWidth =3

if __name_ =="__main__": #NORUNTESTS
LineChart_000().save(formats=["pdf'],outDir=".", fnRoot=None)

A list of the attributes, might be handy for viewing a history of what has been changed. However after a period
of time seeing particular attributes assigned multiple times might seem confusing. If you want to remove the
duplicate settings you have two options, either manually by selecting the 'File' menu then selecting 'Simplify
properties' or automatically when you save your chart by selecting 'Save on Simplify" in the 'Options' menu
(saving you chart is covered the subsequent section).

Manualy Selecting 'Simplify properties

File | Options Actions Windows Help

Setting 'Save on Simplify'

File Options | Actions Windows Help

izontalBarCha

Close ; Edit getContents off
New _ — Private Attributes off
Open Advanced Attributes on
Save Filter test Attr on
Savehs
Export Error Bells off
Sawve on Simplify on ® ® %
Simplify Properties #®& & DEBUG off
Button3 on
Go Tooltips on
Exit Auto CD off
1: post-simplify-data-chart.py “"r": E;:f:i:i:: :;0 x 200)
2: pre-simplify-data-chart.py .
4: strategy_test_legend_pie_drawing.py Auto Size off
5: strategy_test_simple_pie.py M: Searched Packages
! - Package Exclusions
Python Path

—— Extra Font Paths

After you have run 'Simplify Properties, or have 'Save on Simplify' set to 'on', if you look at the 'log' window
you should see that the duplicates have been removed.

#Autogenerated by ReportLab guiedit do not edit
from reportlab.graphics.samples.line_chart import LineChart
from reportlab.graphics.shapes import _DrawingEditorMixin

class LineChart_000(_DrawingEditorMixin,LineChart):
def __init__(self,width=400, height=200,*args,**kw):
LineChart.__init__ (self,width, height,*args,**kw)
self.height 300
self.width 500

self.chart.width = 255
self.chart.height = 200
self.chart.strokewidth =3
if __npame_ =="__main__": #NORUNTESTS
LineChart_000(}.save(formats=['pdf'],outDir=".", fnRoot=None

3
}

Simplifying edits

edit[2]: self.chart.height [0:30] removed

Assignments: 1 removed, 0 not removed 1 lines totally removed
project modified

Page 13

Diagra Documentation

$Revision: 42327 $

3.5 Saving Your Project

If you have made al the changes described above, you should have something that looks like this:

ReportLab Drawing Editor 101 =l

Fil= Optionz Actionz Windows Help

File: <unknovn . clags NewT estDrawingl....Drawing)

zelf. MewFie dttrs

direction = 'clockwise' j
height = z00
lahels = HNone
slices = TypedPropertyCollection(WedgePrope ;l
4| | i
#fdata =[1.2.3] g
Source
self NewFie.width = 2000 -]
zelf. WewPie « =10
zell NewPiey =10 —
zelf WewPie data =M.2.13] -
Log
finizhed list of _known objects 32.068" ;I
Hb =130 #F=252 HC=432 #vN=517 #v|=47E j

We've now made enough changes to be obvious that the chart has changed. Now we can save it. From the File
menu, select the option 'Save'. This gives you a save dialog which allows you to navigate the file system. You
don't have to save the file on your local machine - you can save it on any mapped drive or server that is

available to you. Enter the filename of 'NewPieChart' and click on 'OK' to save this chart. The Drawing Editor
will automatically append a .py suffix onto the filename (to show it is a Python file).

Page 14

Diagra Documentation $Revision: 42327 $

2%

Save ir: IG chartbook2001 j L ¥ B

3 islidehnx.py
oukpuk ‘,verticalharchart.py
_init__.py

chwidgets.py

dokbo, pr

dualchart, pr

horizontalbarchart, py
horizontalbarcharbweentreaxis, py

linechart. py

pigchart. po

scatkerplot, py

File narne: r'-l

j Save I
j Cancel |
P

Save as ype: IPythun files [*.py]

When the main window is visible again, notice how the file line above the main window now contains the file
name.

Now we have finished with the immediate changes and saved the chart, we can close it. Select 'Close’ from the
file menu. The main window goes back to black with the 'ReportLab GUI Drawing Editor' line to show that we
have no chart loaded.

: Glose

@ Ignore unsaved changes?

If you have forgotten to save the changes you have made to the chart, you will see adialog box like the one
above. Click on 'No' to keep this chart open and go back and save the chart, or click on 'Yes' to close it and lose
any changes you have made.

3.6 Exporting to Different Formats

The Drawing Editor also allows you to save your file in a bitmapped graphic format. To do this, go to the 'File
menu and select 'Export’. A 'Save As dialogue box will appear, but it has the addition of a'save as type
dropdown box. Y ou can select from the available formats (including Jpeg or GIF suitable for web use,
Postscript or Encapsulated Postscript, TIFF and PNG).

It's not advisable to export afile without saving it using the 'save or 'save as' options. Once afile has been
exported, it isimpossible to convert it back again. Exporting afileis astrictly one way process.

3.7 Opening Existing Files

Once you have created a chart, you shouldn't have to use the 'New' menu item again. That should be a
once-per-project step.

Back in the Drawing Editor, you can select 'Open' from the file menu to open an existing chart. For this
example, open the file NewPieChart.py. Let's make another couple of changes:

Double click on the 'NewPie = Pie(Widget)' to take you back into the attributes for the PieChart. Click on the
line 'labels = None', which should appear in the entry field ready to be changed. None in this context is a Python
object that means 'null’, and should be used where you don't want an attribute to be used (rather than trying to
use empty strings, empty lists etc which may cause unexpected behaviour). Y ou can change it to something like

Page 15

Diagra Documentation $Revision: 42327 $

'labels=['a, 'b, 'c']' to make labels appear. The labels attribute accepts alist in the same way data does. (You
should also see why we suggested making the x for the pie 25 - if it wasn't this big, you wouldn't have been able
to see the label).

If you select 'Save' from the file menu, the chart will be saved to the file that it came from. Since the Drawing
Editor already knows the file name, you will not be asked to give one, and no save dialogue will appear. If you
want to save thisto a different file name, use the 'Save as' item from the file menu instead.

3.8 Adding Primitives - and another way to add widgets

Aswell as adding widgets from the menu, you can also add them from the text entry box (ie, the "entry box"
with the white background). So to add the pie chart, we could have typed

add(Pie(), 'NewPie')

Y ou may have to highlight and remove what is aready there to do this - in this case highlight "background =
None", hit delete, and type in the line above.

The'Pi€' is the name of the widget, and the 'NewPi€' is the name that we will be referring to it by. Pie must be
followed by those brackets. If you know the structure of the Pie widget, you can use those brackets to passin
attributes for it to use, but in most casesit is easier to leave them empty and set them using the Drawing Editor.

The Drawing Editor doesn't just allow you to add widgetsin thisway. Y ou can also add graphics primitives. If
you type
add(Rect (0, 0, 20, 20), 'Rectangle')

you will see arectangle appear in the bottom left hand corner. The numbers in the brackets represent the
following attributes: x, y, width, height. Y ou can also do this for other graphics primitives (such as Circle and
Ellipse). Notice that because these are primitives rather than widgets, you have to give them certain required
parameters, rather than just let them use their own defaults and edit them later. For more information about what
these are and how to use them, ook in the Graphics Guide documentation (or read the code and docstringsin
reportlab\graphics\shapes.py).

Some examples:

add(Ci rcl e(20, 20,20), 'MCircle')

add(El | i pse(20, 20, 20, 20), ' MyEl | i pse')

add(Li ne(0, 0, 20, 20), ' MyLine")
Aswell as the more obvious graphics primitives, you can also add lines of text to a chart. As an example, type
thisinto the text entry box:

add(String(125,250, 'Exanple Bar Chart'), 'Title')

Looking at the chart, nothing seems to have changed. Thisis because, while the string has been added it's been
added in a place off the top of the chart. To make it visible, edit the height and width attributes (of the chart, not
the pie). Make them something sensible like awidth of 250 and a height of 275 (to alow for the title). The other
alternativeis of course to move the string to a different place on the chart - but the important thing to noticeis
that there isn't any sanity checking of where you put it.

When we added the string, we gave it ay attribute of 125, which isin the centre of the chart. To make sure the
string actually is centred, you need to edit its attributes. Click on the line in the attributes window which says
'Title = String(Shape)'. Right-click on the textAnchor line, and you can see the options to select from. 'Start'
makes the x position the start of the line of text, 'end' makes the end of the line appear at the x position, and
'middle’ centresit. Y ou can aso change the font to be used for the string, its size and various other attributes
from here.

By this point, you should have enough knowledge to put together a static chart at least as complex as the one
below:

Page 16

Diagra Documentation $Revision: 42327 $

Example Bar Chart

Page 17

Diagra Documentation $Revision: 42327 $

Miscellaneous Features

A few quick notes about Drawing Editor features that we haven't mentioned yet:

Zoom set

Thisitem (from the Windows menu) allows you to zoom in or out of the chart. In other words, it magnifies
or decreases the size of the image in the main window.

Clear log window

Thisitem (from the Windows menu) removes all the text from the log window. Useful if you have large
amounts that you no longer want to scroll through.

Reload module

Thisitem (from the Actions menu) make the Drawing Editor reload a module. Useful if you have edited or
updated the Python file for one a class or drawing while you have the Drawing Editor still open. Instead of
shutting it down and restarting to make sure the Drawing Editor notices the change, you can use 'reload
modul€' and select the module to reload and update.

Debug

Thisitem (from the Option menu) turns on some debugging information printouts. These are normally only
of useto developers.

Exit

Thisitem, in the File menu, quits out of the Drawing Editor program.

Page 18

Diagra Documentation $Revision: 42327 $

4 Working with Charts

This chapter covers some general details of the chart classes and their attributes.

4.1 Working with Collections

A number of attributes for charts are 'Collections. A collection in thisinstance is a 'smart collection class under
the hood which allows you to change attributes for just one or for al of the itemsin a set. These sets can be the
dicesin apie chart, or the labels or barLabels in aline chart. They even allow you to change the attributes for
an item which doesn't exist yet!

If you have a source distribution, open the file named 'example_collections 1.py' from the 'samples’ directory.
Click down into the attributes for the pie chart. Y ou should see aline like this:

slices = TypedPropertyCol | ecti on(\WedgeProperti es(PropHol der))
Thisline represents a collection. Double click on the line to show the attributes of the collection:

[0].fillCol or = dar kcyan
[1].fill Col or = bl uevi ol et
[2].fill Col or = bl ue
[3].fillColor = cyan
[8].fillColor = green
fill Col or = pink

These attributes fall into two different categories.

If alinein acollection (such asthe 'slices collection above) starts with a number in square brackets, that line
refers only to that numbered element in the collection. So '[2].fillColor = blue' sets thefilling only for the third
wedge in the chart (since we start counting from 0). Any attribute that appears in a collection can have a
numeric index added as a prefix to define that attribute for one element of the collection. In our pie example,
you could set strokeWidth, strokeDashArray, strokeColor, popout, labelRadius or fillColor for any individual
dicejust by adding a prefix like 'T0].' to the start of the line.

In contrast, if alinein a collection begins with an ordinary attribute name, then that line sets the default value
for al of the analogously-named numbered attributes in the collection. For example, the last line above makes
all the wedgesin your pie chart pink by default.

Y ou should be careful when mixing the two kinds of statements. One of the second type (with no numeric
index) setsthe attributes for al the elementsin the collection - but only if none of the second type are used. The
kind with the numeric index always over-ride the more general kind of statement. These general, un-numbered
statements then become a default which is used as a fallback when no specific statement appliesto a particular
element. (e.g. if you define adefault fillColor with one of these un-numbered statements, then define the
fillColor for elements[Q], [2] and [4], the default fillColor statement would apply to elements[1] and [3]).

If our chart has fewer than 9 dlices, then you might expect the second-to-last line in the pie chart example above
to cause aproblem. It doesn't. Y ou should think of these statements as prescriptions for what to do to a member
of the collection if it exists - if it doesn't this prescription is silently ignored. This also means that when you are
using the Drawing Editor to edit a chart, you can edit the attributes for an element which isn't even in the list
which appears in the attributes window.

Another thing to be aware of with collections is the way that they ‘rollover'. When you set the attributes for
numbered members of a collection, if there are more members than you have set the attributes for, then the
attributes will rollover. If you have set '[Q].fillColor' asred, '[1].fillColor' as green and '[2].fillColor' as blue,
then thefillColor for '[3]" would flip back to the start and become red, [4] becomes green, and so on. (Actually,
thisisn't quite the case for the standard pie chart since it has the first four fillColors set in the base class, but this
principle works in most other places).

Adding New Attributes to a Collection

To add anew numbered attribute to a collection, simply enter anew atrribute in the entry field. For example, to
add a new attribute specifying the stroke width for the first pie dlice:

[0].strokewdth = 1

Page 19

Diagra Documentation $Revision: 42327 $

ReportLab Drawing Editor =10/ %]

Fie Options Actions Windows Help

mea’iileea"codea’rle:-:lraa’gvaphicsx’dcu:a"samplés;’éx;a'nipllel_|.:|r'|3.|':|e.iti;e.s'_l2:p}l, cla§§ Drawmg_IJ

L

self. contents{] slices dttrs
[0] .fillColor = darkeyan =

.3trokellidth

[1] .fillColor = blueviolet
[2] .fillColor = hlue =
#|[0stokebidh =1 *

4.2 Working with Legends

This section shows how to construct legends. Legends are alittle more involved than most other chart
components, in that they commonly need to pull other information from other things on the drawing; their size
and shape may depend on the number of data seriesin a chart, which isn't dways known at design time.

L egends have just undergone an upgrade in December 2004 to allow them to ‘connect to' and configure from the
charts they are attached to.

If you have a source distribution, the example charts herein will be located in a subdirectory called 'ssmples and
are named as 'example_legend*.py'. All of these can be opened in the Drawing Editor, and directly executed to
create a PDF output chart.

The drawing below shows us getting started with a simple drawing containing a vertical bar chart, title string,
and Legend object. The Legend has all the normal default values EXCEPT THAT we have positioned it by
setting x=220, y=20, and boxAnchor="southeast". The latter choice means that the (220,20) reference point is at
the bottom Ieft of the legend. When you first add the legend, you might not even seeit asy = 0 and the legend
‘grows down' from the top of the drawing.

Page 20

Diagra Documentation $Revision: 42327 $

Chart with Legend - example 3

130+
120+
110+
100+
90+
80+
70

® o O pink
@ blue O vyelow
@ green

North South East West

Thelegend s, of course, the bit on the right with the multiple circles. This does not agree with the chart
because, at the moment, it has no knowledge whatsoever of the chart's existence.

WEe'l just give aquick guided tour of the main attributes; we advise you to open up this example in the drawing
editor or to create one yourself and explore. A legend consists at minimum, of a number of 'swatches of colour,
each with a string attached. The overall position is set with the x, y and boxAnchor attributes. The actual data
can be explicitly set through the colorNamePairs attribute, if you wish. Let's say we know there will be two
series, and want to configure automatically.

There are two main ways to get alegend working correctly. First, you can explicitly configureit. If (asisvery
often the case), you know exactly how many series there will be, and the labels to go with them, you could set
this:

col orNanmePairs = [(red, 'w dgets'), (green, 'sprockets')]

And you would then see alegend like this:

Chart with Legend - example 2

130+
120+
110+
100+
90+
80+
70

widgets [l
sprockets [l

North South East West

The other thing you may want to do is adjust the position of the swatches, especialy if there are alot of them.
Pie charts might have a dozen or more. The basic layout is to arrange them in columns, up to a maximum numbe
of swatches per column; the legend has an attribute columnMaximum with default value 3, meaning that after 3
swatches are created it will start a new column. If you had twelve colorNamePairs entries and | eft the
columnMaximum on 3, you would get 4 columns. Y ou can set this to a high number to arrange all your swatches
vertically, or to 1 to force them to spread out horizontally. There are also a number of attributes to specify the
size of the swatch rectangle itself (dx, dy), the vertical and horizontal separation between swatches (deltax,
deltay), the space between swatch and text (dxTextSpace), and whether text appearsto left or right of the
swatches (alignment).

Page 21

Diagra Documentation $Revision: 42327 $

Until v1.20 (Dec 2004) al swatches were simple rectangles, and a separate Linelegend would draw lines with
markers. From Jan 2005 onwards, you are advised to use the plain old Legend class, and if you want a different
shape under direct control you can set the swatchMarker attribute. For example, if we assign as follows:

| egend. swat chMar ker = makeMarker (' Circle')

...then we get circle shaped markers, and can then drill down into the marker object to further configure the size,
colour, thickness etc. The default kinds of Marker at present are 'Square', 'Diamond’, 'Circle, 'Cross, 'Triangl €,
'SarSx', 'Pentagon’, 'Hexagon', '‘Heptagon', 'Octagon’, 'SarFive, 'FilledSquare', 'FilledCircle,
'FilledDiamond’, 'FilledCross, 'FilledTriangl€e','FilledSar Sx, 'FilledPentagon', 'FilledHexagon',
'FilledHeptagon', 'FilledOctagon', 'FilledSarFive', 'Smiley'

Thiskind of direct control is simple and should let a designer position alegend exactly the way they want.
While it may seem perverse to set the shapes and colours yourself, it's also probably the simplest way to do
things in cases where there are many charts arranged on adrawing.

Connecting charts to legends

In other cases, one really wants the legend to intelligently connect to the chart and configure itself, as the chart
data might vary dramatically at runtime. Two cases where you might often want this are for Pie charts with
many slices, where it's tedious to repeat along list of colour names and the number is variable; and for line
charts with markers, where quite alot of attribute-setting would be needed to make the legend match the chart.
The new Auto feature allows this to be done at several levels. (This has been added in a backward compatible
way and is therefore not very elegant - be warned! In Version 2.0 we hope to reimplement some attributes more
sensibly). To do things automatically, you must set the colorNamePairs object to a new magic 'Auto’ value, and
tell it how to find the chart to configure itself from. In the example below, we have switched to a LinePlot object
called 'plot', and defined markers for the lines. The Drawing object can thus refer to it as 'self.plot’, and we pass
thisto the Auto object as follows:

col or NamePai rs = Auto(chart=sel f.plot)

That's the main thing we need to do - the chart now picks up the number and colour for each series, and draws
thelines. It cannot yet say anything more intelligent than 'series 0' and 'series 1' for the series names. We'll cover
thisin amoment.

Example 4 - auto legend

2 series0 ¢

2 seriesl —

T T ¥ T T |
10 15 20 25 30 35 40

The problem is that until now we have had no need for any 'series name' in the chart classes. We've added a
hidden attribute to most of the charts so you can set thisif you wish, and legends can pull it out. Each chart has
an collection attribute, whose name regrettably varies, for saying how each series should appear; for abar chart
thisiscalled 'bars, for apieitis'sices and for alineplot it is'lines. If one drillsinto thisin the editor, one can
set these on specific series by typing "[n].name="myname™ for series n. Defining two of these will result in the
following chart:

self.plot.lines[0].nane
self.plot.lines[1].nnane

' sprockets’
"W dget s’

Page 22

Diagra Documentation $Revision: 42327 $

Example 5 - auto legend with series names

3 sprockets -
2 widgets —

10 15 20 25 30 35 40

Page 23

Diagra Documentation $Revision: 42327 $

4.3 Working with Colours

Our graphics framework supports the RGB and CMYK color models as well as specific spot colours. The
examples so far have all involved attributes like 'red' and 'yellow', which actually refer to RGB colours. Here's
what we have done so far when editing a color:

ReportLab Drawing Editor h -|D|_X_|
File Dptions Windows Help

File: <unknouwing, class blah... Bl inePlotC5Y Frocess)

T T T T
1297 (12198 (4/98 (%8 R4

pie
selt plot Atz
background = lone e
chartFill = None
data = [[(35764, 100.0), (35793, 100.1704367), (3 _
debuy =0
fillColor yellow
groupSpacing =1
height =l
ininedlines =1 ﬂ

A M
*lfillCalor = pellow +
Y ki

Some users prefer to use CMYK colours while others,for example web designers, may want a specific RGB
value. Here are the things you could type into the line currently saying 'yellow'":

For the RGB model, with each number from O to 255, we use the standard Color class from reportlab.lib.colors:
fillColor = Col or(128, 0, 0)

People used to writing HTML documents may find "HTML-style" colors useful:
fillColor = toCol or('#FF0000")

For the CMYK model, with each number ranging from 0 to 1, we use the class CMYKColor:
fillCol or = CMYKCol or (1.00, 0, 0. 83, 0. 47)

Many people in the graphics world think in percentages and like to specify arange from 0 to 100. We therefore
have a PCMYKColor classaswell - the'P' standard for 'Percentage’ - which is exactly the same except for the
numeric range:

fillCol or = PCMYKCol or (100, 0, 83, 47)

CMYKColor and PCMYKColor accept the spotName and density attributes. In our core open source model, they
don't do anything and are ignored when we write Postscript, but an additional (commercial) renderer will know
what to do with this information. So we can now specify an "Institutional Green" if we wish, or do inks of
varying densities:

OMYKCol or (1. 00, 0, 0. 83, 0. 47, spot Name=' PANTONE 349 CV', densi ty=1. 00)

Finally and most usefully, we can just define some constantsin an external file. Create amodule called, say,
"yourcolors.py"”, and put in on the Drawing Editor's search path somewhere (for examplein
rlextra/graphics/guiedit). In it we can put named constants like this:

fromreportlab.lib.colors inport CMyKCol or

#Your Conpany's Institutional colors

Page 24

Diagra Documentation $Revision: 42327 $

I nst G een = CMYKCol or (1. 00, 0, 0. 83, 0. 47, spot Nane=" PANTONE 349 CV
densi ty=1. 00)
I nst Khaki = CMYKCol or (0. 32, 0. 23, 0. 51, 0. 07, spot Nane=' PANTONE 875 CV',
densi ty=1. 00)
the Drawing Editor will find these colors, and you can use them just like the standard ones. We suggest that
where required each department creates a module of their own like this.Warning: don't try to redefine 'red’, and
don't define the same name in more than one module; we don't want to promise which definition would be found
and used.

4.4 Working with Fonts

Diagra can use exactly the same fonts in all output formats. It uses Type 1 fonts and needs an AFM and a PFB
file for each. We covered their installation earlier. If creating fonts outside of the 'standard 14
(Times/Helvetica/Courier with bold and italic, Symbol and ZapfDingbats), you may need to add a couple of
lines when rendering adrawing.

TouseaType 1 font (aka a Postscript font), you will need at least two files. So for example, for the font Avenir
you could have files including:

aebl o . PFB

aebl . PFB

aeblo___. AFM

aebl . AFM
AFM file

The AFM file isthe 'Adobe font metrics file. The AFM file contains important info about the charactersin the
font (the 'glyphs). Thisincludes information such as their height, width, info on the bounding box, hints and
kerning and other things that are collectively known as the 'font metrics. It isvital to have the AFM fileif you
want to use any ReportL ab software to embed fonts.

= |If you don't have the AFM file for an Adobe font, you can get them from the Adobe site.
ftp://ftp.adobe. con pub/adobe/type/wi n/all/afnfiles/

= To find the Adobe package number, you can check their type catalogue:
http://ww. adobe. com type/ mai n. ht m

PFB file

The PFB fileisthe 'printer outline file' or 'Printer Font Binary'. The PFB fileis used by our software if you need
to produce bitmaps (by setting ‘formats' to be gif, jpg etc), and to produce the previews in EPSfiles.

PFM files

Y ou may aso see PFM files. The PFM fileisthe 'metricsfile' or 'Printer Font Metrics file. Essentialy, thisisa
reduced version of the AFM file. Most of the information our software needsis missing from thisfile.

Once you have these files, they have to be located somewhere where our software can find them.

If you look in thefile rl_config.py (located in the Python22/reportlab/ directory), you will find a section that
looks something like this:

places to look for T1lFont infornation

T1SearchPath = ('c:/Program Fil es/ Adobe/ Acrobat 5.0/ Resource/ Font', #Wn32, Acrobat 5
"c:/Program Fi | es/ Adobe/ Acrobat 4. 0/ Resource/ Font', #Wn32
' o4 di sk) s/ Appl i cations/Python %sys_version)s/reportlab/fonts', #Mac?
"/usr/lib/Acrobat5/ Resource/ Font', #Linux, Acrobat 5?
"/usr/liblAcrobat 4/ Resource/ Font', #Li nux
' %{ REPORTLAB DI R)s/fonts' #speci al
)
If you have extra fonts that you want to use and embed, you have two choices. Y ou can edit therl_config.py file
and add the existing directory where your AFM and PFB files are located to this section. Or, you could add your
font files to one of these directories which the Diagra software already know about. A good oneis

'%(REPORTLAB_DIR)d/fonts (i.e. C:\Python22\reportlab\fonts on a standard PC installation).

Typically, if you are running in a server environment, you'd put the AFM and PFB files in the fonts directory
under the reportlab installation. If you are running in a desktop environment, it might be easier for you to add
your font directories to the sectionin rl_config.py instead.

Page 25

Diagra Documentation $Revision: 42327 $

Once you have done all this, you can then use any of these fonts from the Drawing Editor. Anything which has a
'fontName' attribute can be given the name of one of these fonts. (If in doubt, the name we use is the same as the
one which appears in the AFM file on the line which begins 'FontName).

4.5 Formats and Formatters
DecimalFormatter

In any place in a chart where you might require aformat, you can use the decimal formatter. The most obvious
examples are the bar Label Format and valueAxis.label TextFormat in a bar chart.

What you would do is find the correct line in the window, highlight it so that you can edit it in the Drawing
Editor's text entry field, and replace the text after the equal's sign with 'Decimal Formatter()'. Don't forget the
brackets at the end! Y ou should then see something which resembles one of these lines (though of course the
details would change with the location):
bar Label For mat = Deci mal Formatter (pl aces=2, deci mal Sep=".",
t housandSep=None,
pr ef i x=None,
suf fi x=None)
val ueAxi s. | abel Text For mat = Deci mal Formatt er (pl aces=2,
deci mal Sep=".",
t housandSep=None,
pr ef i x=None,
suf fi x=None)
This then allows you to do things like change the decimal separator from afull stop to acomma (to have
numbers appearing in the continental style of '1,00' rather than '1.00"), and add a prefix (for thingslike '$' and '£")
or suffix (for things like '%'"). This also allows you to specify how many numbers should appear after the
decimal point (or comma) - thisis set by the 'places attribute.

NA_Label and nalLabel

In some circumstances, you will have a chart which takes data from a database which contains nulls (i.e. total
empty cells which return a‘'None' value to Python or a'Null' value to SQL). By default, these cells are ignored
(so, for example, no bar and barL abel appear for them in abar chart which instead just |eaves a gap where the
bar should be).

Thisisn't always what you want. The required behaviour may be to leave out the bar but to insert alabel which
says 'n/a (or 'results not in' or some other snippet of text).

Thisiswhat the attribute naLabel is designed for. A number of the charts have an attribute called nalabel .
Initialy, this starts off as:

nalLabel = None
Y ou should change this to read
nalLabel = NA Label ()

The Drawing Editor should then expand it to read something like:
nalLabel = NA_Label (Bar Chart Label)

These na_labels start of as Times-Roman with afillColor of black and the text being 'n/a’. They do not start with
the same formatting as your normal barLabels, and use their own separate formatting, which allows you to set
them to a different colour or style if you want them to stand out.

NB: These labels only get used for cells which return Null (or None). '0' is often a perfectly valid piece of data,
so if you want your chart to display these na_labels in these situations, you should change the behaviour of your
database to returns nulls rather than zeroes in these locations.

Format Strings

Y ou will probably be using format stringsin a number of places when you use the Drawing Editor to create or
modify charts. As an example, hereis afileNamePattern taken from a DataAwareDrawing.
(DataAwareDrawings are designed to pull data from a data source and produce multiple files using this data,
and their fileNamePattern allows us to do give them distinct names which share a common root).

fileNanePattern = 'draw ng%3d'

Page 26

Diagra Documentation $Revision: 42327 $

The '%' sign means that we are using aformat string. Anyone who has used C's sprintf() format or is familiar
with string formatting in Python will recognise this. The 'd' in this case stands for ‘decimal’ (i.e. adecimal
integer). Others you may (rarely) want to use include 'f' for a floating point number, ‘o' for octal, 'x' or 'X' for
hexadecimal, 'i' for integer (identical to 'd’), and 's for string. The '03' refersto azero fill - in this case to three
digits. If you use 'f', the chartld is converted to afloating point number, and you can use a'.' between two
numbers to specify afield width and a precision.

Examples:

The following examples assume that we are using chartlds of 1, 2, 3 and that we are only producing PDF
output:

fileNamePattern result
dr awi ng%d drawi ngl. pdf, draw ng2.pdf, draw ng3. pdf
dr awi ng%93d drawi ng001. pdf, draw ng002. pdf, draw ng003. pdf
drawi ng%®7d dr awi ng0000001. pdf, draw ng0000002. pdf,
dr awi ng0000003. pdf
drawi ng% drawi ngl. 000000. pdf, draw ng2. 000000. pdf,
dr awi ng3. 000000. pdf
drawi ng%. 2f drawi ngl. 00. pdf, draw ng2. 00. pdf, draw ng3. 00. pdf
dr awi ng% drawi ngl. pdf, draw ng2. pdf, draw ng3. pdf
drawi ng%. 5f drawi ngl. 00000. pdf, draw ng2. 00000. pdf,
dr awi ng3. 00000. pdf
drawi ng3. 2% drawi ng3. 21. 000000. pdf, draw ng3. 22. 000000. pdf,
dr awi ng3. 23. 000000. pdf
drawi ng03% dr awi ng031. pdf, draw ng032. pdf, draw ng033. pdf

NB Notice how the last two are wrong: they both have the numbers before the '%' sign rather than after it, so the
numbers are just treated as part of the alphanumeric filename prefix rather than the formatting string. These
examples all use 'drawing' as this prefix, but you could of course have used 'Foobar' or anything that you
required.

Page 27

Diagra Documentation $Revision: 42327 $

5 Creating Data Aware Charts

5.1 Introduction to DataAwareDrawings: Plotmode, fileNamePattern and outDir

The main difference between a static drawing and a data aware drawing is that a data aware drawing inherits
from the 'DataAwareDrawing' class (which in turn inherits from 'Drawing’). In practice, you can do anything
with a DataAwareDrawing that you can with a Drawing, but it has a number of additional abilities.

To start a DataAwareDrawing, start up the Drawing Editor, select 'New' from the File menu and choose
'DataAwareDrawing' for the Base Class Name. Give it aname - such as 'NewDataAwareDrawing'. Thisisalso a
blank canvasin the same way that Drawing was.

ReportLab Drawing Editor = 13] =i
Fil= Options Actions Windowss Help

Filz: <unknown: . class HewDatadwareDiraing]... D atadwsareDrawing)

-

self Abtrs

EFS_info

backoground

chartId [u]
datalSource DataSource (Widget)

fileMamePattern 'drawing®03d4d!’

formats ['eps', 'gif'] —
height zoo
outhir bt
prewiew 1
samnlehara ToTie
#JEPS_info =['SFR." v it "]
Source
if __name__ =="_marn__"" HNORUMTESTS

WewDataAwa_reDlalng[].go[]

Lag
IFiniohan lizt ~F krmian ahiects 20130

L 1] CRTn N

The attribute window should contain something like the following:

EPS info (' Dept', 'Your Conpany')
backgr ound None
chartld 0

dat aSour ce
fileNanePattern

Dat aSour ce(W dget)
" drawi ng%®3d’

formats =['eps', 'gif']
hei ght = 200
outDir ="'
previ ew =1
sanpl eDat a = None
showBor der =0
test =0
transform = (1, 0, 0, 1, 0, 0)
ver bose =0
wi dt h = 400
Plotmode

One attribute that we didn't see when starting off with a Drawing was the ‘plotmode’ (the line that ooks like:
fornmats =['"eps', 'gif']
Thisisthe format that the output will appear in. The square brackets around it show it isalist. Each item in it

should be surrounded by quotes. We can have multiple output formats (as long as the renderers can handle
them).

Page 28

Diagra Documentation $Revision: 42327 $

Valid plotmodes are currently 'pdf', 'gif', ‘png’, 'tif', 'jpg’, and 'eps.

fileNamePattern

DataAwareDrawings are designed to pull data from a data source and produce multiple files using this data.
Therefore we need to have some sort of filename convention to tell them apart. The fileNamePattern allows us
to do this. The default of :

fileNanePattern = 'draw ng%3d'
will give each file aname in the form of 'drawing001'(plus afile type suffix), 'drawing002', 'drawing003' and so
on. You can edit this to change both the prefix text and the number added to it.

The'%' sign means that we are using aformat string. See section 4.5 for more information about these.

outDir

Aswell as changing the name of the files produces, you can change where they are saved. Theline
outDir ="'

sets the output directory for these files to be the same as where the script is. Y ou can change thisto a
subdirectory, use .. for navigation back up the file system, and either give absolute or relative path names.

EPS info

This only useful when producing EPS output. It contains the Department and Company info that are inserted
into the EPS header. It isignored if you use any other output format.

background

This allows you to use a background for the whole drawing (not just a chart inside the drawing). Y ou can use
any colour that we recognise (look in reportlab\lib\colors.py and any other files where you have defined colours
such as perhaps yourcompany\yourcolors.py) for lists of these. The RML2PDF has a good colorized list of these
in Appendix A("Colors recognized by RML")). The following is an example of how to do one of these coloured
backgrounds - this uses pink, but you can use any colour. Once you have added the background, you should see
anew attribute appear in the attribute window which reads 'background = Rect(SolidShape)'. Y ou can how
double click on this to change the colour, add a stroke color and stroke width (the stroke in this case being an
outline around the Drawing), and various other attributes.

backgr ound = Rect(0,0,self.width, self.height, fillColor=pink, strokeCol or=None)
Aswell as plain colours, you can also use other widgets. For example, entering the following into the entry box
backgr ound = Gid()

givesyou agrid as the background, whose attributes you can then edit in the usual way (making it horizontal
instead of vertical, changing whether it uses coloured stripes or lines and so on).

5.2 Setting the Data Source

A DataAwareDrawing can contain one (and only one) 'DataSource’. Currently, all our data-aware classes use an
ODBC database, but you can use aCSV file - and eventually you would be able to use other sources (such as an
Excel spreadsheet).

For this example, you'll need to set up your database before you do anything involving datain the Drawing
Editor. We provide an example Access database called 'ssmpledata.mdb’. Y ou should register it with the data
source name 'samplechartdata. On a Windows machine, thisinvolves going to the Control Panel and selecting
'Data Sources (ODBC)' (or a control panel with asimilar name, which may or may not be under ‘Administrative
Settings' depending on which version of Windows you are using).

To make the chart connect to a database, you need to edit the line that reads

dat aSour ce = Dat aSour ce(W dget)
so that it reads
dat aSour ce = (ODBCDat aSour ce()

Y ou should then seeit change in the attributes window. Y ou can then double click on that line to set the various
attributes of the datasource. Once you have done this, the attribute window should look something like this:

Page 29

Diagra Documentation $Revision: 42327 $

associ ati ons
gr oupi ngCol um
name

passwor d

sq

user

Array(0, DataAssoci ation)
0

' sanpl echart dat a

' SELECT * FROM generic_pie'

The name in this case is 'ssmplechartdata’, though it could be any name you have previously set up asan ODBC
data source with the OS.

If your ODBC datasource connection requires a username and password (for instance if you're using SQL server
without Windows Authentication), you can append them to the datasource name separated by backslashes. So to
connect to dsn 'mysqglserver' with username ‘john' and password 'secret’, set the dataSource.name property to
'mysqgl server/john/secret’

The sql attribute isthe line of SQL (structured query language) to be used to pull the data from the database. In
most cases you can either use

' SELECT * FROM your dat asour ce

which gives your chart access to everything in the database (where your datasource is the name of the
datasource as given in samplechartdata), or

' SELECT col ummnane, col umnane, col utmnanme FROM your dat asour ce

which will only give you the specifically named columns from the datasource - whether there are any other
columns in the database or not.

5.3 Setting the Data Associations

Once you have the data from the database, then you must define what to do with it in your chart. Thisis what
the data associations are for.

When you first start a data source, there are no data associations set up. Double-clicking on the 'dataSource =
ODBCDataSource(DataSource)' line brings up a set of attributes in the attribute window which includes:

associ ati ons = Array(0, DataAssoci ation)

This shows that you have no data associations set-up yet. Y ou can either edit that line in place, and make the
zero into the number of data associations you will need, or double click on it, which will show you an attribute
that says:

size = 0

where you can then edit the zero in the same way.

Whichever way you do it, the size line then changes (e.g. to 'size = 4'), and you will see a number of linesin the
pattern of:

el ement XX = Dat aAssoci ati on(col uim=n, target=None, assocType='vector')

The column isthe position in the list of data retrieved by the SQL statement that we saw under the dataSource.
Notice how the count of columns starts a 0 rather than 1, and that column 0 is usually the chartld.

So, for example, if the SQL was
' SELECT chart|d, nunber O Boxes, | abel , val ue FROM generi c_sl i debox
then:

= column O would be the data in the column of the database called ‘chartld’,

= column 1 would be that of 'numberOfBoxes,

= column 2 would be 'labdl’ and,

= column 3 would be'value'.

Typically, column 0 is held by chartID which is used in setting the filename for the chart.

If you use a SQL statement which explicitly names the database columns you want to retrieve in thisway, it is
lessfragile and likely to break than one where you pull everything using a™*'. If you use a'SELECT * FROM'
type SQL statement, it will break if anyone inserts another column between two of yours and changes the order

Page 30

Diagra Documentation $Revision: 42327 $

of the columns you are retrieving. Naming them saves you from this risk.

Thetarget is the name of the variable in your chart that this data should be plugged into. This should always be
qualified by using the name of the widget (or other object) where that variableis set. So you would use
'PieChart.data rather than just data (if you wanted to set the data attribute in the widget PieChart), or
‘chart.xValueAxis.labeltextFormat' rather than just 'labeltextFormat' if you wanted to set the format of the label
text in the X-Axis of alinechart called ‘chart'.

And lastly, the assocType is the type of association used to retrieve the data. Y ou can pull single or multiple
columns or rows from a database or just asingle cell. Valid values are 'scalar’,'vector','matrix’, ‘tmatrix' (from
transformed matrix) and 'rowmap’. For more info on these, look in individual examples and the following
chapter ("More on Data Sources).

Page 31

Diagra Documentation $Revision: 42327 $

5.4 A practical example: Slidebox.py

The previous descriptions were probably pretty confusing without any solid examples to compare the against, so
this section will rectify that. We will work through 6 examples (which should be available in
rlextra/examples/graphics directory - those that work off the example database use the have the suffix of
_db.py). In al of these examples you will see an example of what the finished chart looks like, along with the
datain the sample database and the Data Source and Data Association lines.

Example Chart

IS (s 67

Source: ReportLab

Database L ayout
Table: generic_slidebox
chartld | numberOfBoxes label value title
1 7 source: Guinness 6 Beer Sales
2 7 source: Hoegaarden 5 Beer Sales
3 5 source: Youngs 4 Beer Sales

Drawing Data Attributes
#Aut ogener ated by ReportLab guiedit do not edit

fromrlextra.graphics.guiedit.datacharts i nport ODBCDat aSource, DataAssociation, DataAwareDraw ng

fromreportlab. graphics. shapes inport _Draw ngEditorM xin
fromreportlab. graphics.charts. slidebox inport SlideBox

cl ass SlideBoxDraw ng(_Draw ngEdi t or M xi n, Dat aAwar eDr awi ng) :

mdef __init__(self,w dt h=400, hei ght =200, *ar gs, **kw) :

mmappl y(DataAwareDrawi ng. __init__, (sel f,w dth, hei ght) +ar gs, kw)

mmsel f. _add(sel f, SlideBox(), name=" Sl i deBox', val i dat e=None, desc="' The nmai n chart"')
mmsel f. hei ght = 40

mmsel f.width 168

mmsel f. dat aSource QODBCDat aSour ce()

mmsel f. dat aSource. sql
mmsel f. dat aSource. associ ations. size = 4
mmsel f. dat aSource. associ ati ons. el enent 00
mmsel f. dat aSour ce. associ ati ons. el enment 01

Dat aAssoci ati on(col um=0, target='chartld',
Dat aAssoci at i on(col um=1,

' SELECT chart | d, nunber O Boxes, | abel , val ue FROM generi c_sl i debox’

assocType='sca

target =" Sl i deBox. nunber O Boxes' ,

assocType='scal ar')
Dat aAssoci at i on(col um=2,

mmsel f. dataSour ce. associ ati ons. el ement 02

target=' Sl i deBox. sour ceLabel Text"',

assocType='scal ar")
Dat aAssoci at i on(col umm=3,

mmsel f. dataSour ce. associ ati ons. el ement 03

target="SlideBox.triangl ePosition',

assocType='scal ar')
1
['eps', 'pdf']
".loutput/'
' sl i debox%©3d'

mmsel f.verbose

mmsel f.formats
mmself.outDir

mmsel f.fileNanmePattern

if __name__=="__main__": #NORUNTESTS
m S| i deBoxDr awi ng() . go()

Description

This example can be found in the directory r | ext r a/ exanpl es/ gr aphi cs, with the filename of
sl i debox_db. py. sl i debox. py issimilar, but runs off aCSV filerather than a database.

In thisfirst real example, we have given you the whole code that the Drawing Editor produces. For all of the
other charts you will only be shown the self.dataSource attributes (and you should never need to look at the raw
code if you are using the Drawing Editor). This chart is the simplest (from a data standpoint), so we can both
show you what the code looks like in its raw state, and point out afew other pieces of information at the same

Page 32

Diagra Documentation $Revision: 42327 $

time.

The are only three pieces of datathat a didebox chart requires:

number OfBoxes: the humber of coloured and numbered boxes that make up this widget (in the example graphic
above, itis7).

label: the text that is displayed at the bottom right of the widget (in this case 'source: ReportL ab')

value: the number where the triangle pointers should be displayed.

Looking at the code of slidebox.py (in the '‘Drawing Data Attributes section above), the first line we need to
consider is

sel f. _add(sel f, Sl'i deBox(), nane=" Sl i deBox', val i dat e=None, desc=' The main chart')

Thisisline that adds the widget 'SlideBox' to the basic DataAwareDrawing. If we had been making this up from
scratch, we could have achieved the same thing by selecting 'Add New Widget' from the Action menu, clicking
on SlideBox in the list of widgets, and typing in the name 'SlideBox' in the 'New Widget Name? text box.

The 'self.height' and 'self.width' lines, as you would expect, set the height and width of the resulting drawing.
The 'self.dataSource' line sets things up so that we can use a database as the source for our data.

The 'self.dataSource.sgl' line shows the line of SQL we use to pull thisdata. Thislooksin the table
generic_slidebox in the database we have already specified and retrieves, for each chart items from the columns
named 'chartld’, 'numberOfBoxes, 'label’ and 'value'.

The four lines that start 'self.dataSource.associations' set up what to do with this data. Each of these has an
assocType of 'scalar'. Scalars are the simplest type of data association. They retrieve asingle cell from the
database (actually a 1x1 matrix). So for each chart, we retrieve the single element ‘chartld' (which is not inserted
into the widget that we use to create the slidebox since it is used by the DataAwareDrawing in constructing the
filename), the single element 'numberOfBoxes which isinserted into the 'numberOfBoxes’ attribute of the
widget SlideBox, the element 'label’ which is inserted into sourcel abel Text attribute of SlideBox, and the
element 'value' which isinserted into the attribute trianglePosition of the SlideBox widget. Y ou can see all these
attributes when you double-click on the 'SlideBox = SlideBox(Widget)' line in the attributes window - it then
displays al the attributes for this widget.

When you are editing a drawing using the Drawing Editor, everything is static. How can wetell if the data
associations are correct? Thisis where the 'sampleData and the 'test' attributes come into action. If you set the
test attribute to be '1' (rather than the default '0"), it will test if the data-aware parts of your drawing work. It
connects to your data source, fetches the data and applies the first block of datato the drawing (i.e. in this case,
usesthefirst row in the table). If it fails, it gives you an error message in the Log window which should explain
what went wrong. So for example, if you have the dataSource name wrong (or have forgotten to set it up with
the OS), you would see something like this:

Operational Error: ('"IM02', O, '[Mcrosoft][ODBC Driver Mnager] Data

source nanme not found and no default driver specified , 5896)
If everything works correctly, then the information from the first block of datais used, the main window will
change to reflect the new status of the SlideBox widget, and the dataitself is appears in the 'sampleDatal
attribute:

sanpl eDat a =[(1, 7, 'source: Quinness', 6)]

If you want to continue testing, you can use numbers higher than one for the test attribute, and the drawing will
fetch the corresponding data and use it in the same way (as long as you don't overshoot the end of the datain the
data source).

Thelast attribute to mention before we talk about running this script and creating the chartsis 'verbose'. If
verbose is set to 0, then when you run it, the script is silent. It produces no text on your screen confirming what
it has done. If verboseis set to 1, then it produces a message telling you when it has written each file. (These
messages may be very useful in testing, but less so on a server - you can suppress them at will using this
attribute).

Thelast line of the code is the one that makes the drawing 'active’. DataAwareDrawing has a'go’ method - a
piece of code that connects to the specified data source, repeatedly fetches blocks of data, closes the connection,
and uses the data in the way you have specified. The Drawing Editor inserts a call to thisinto your new drawing,
so that when you run it from the command line or the desktop it will automatically do this. Guiedit
automatically doesthisif the class has a'go’ method to make it active - DataAwareDrawing has, but Drawing
doesn't. Y ou should never have to insert this call by hand - but it's worth knowing about.

Page 33

Diagra Documentation $Revision: 42327 $

5.5 Running the resulting scripts

Once you have made any changes you want to the chart and then saved it to afile, you can then execute it. To
run the script that creates the charts from this base chart, you need to drop back into the Operating System. You
can use Windows Explorer (or the Finder if you are on aMac) to find slidebox.py and double click on it.

Y ou should see awindow open and the following text appear init:

generating PDF file './output/slidebox001l. pdf’

generating EPS file './output/slidebox001l. eps’

generating PDF file './output/slidebox002. pdf'

generating EPS file './output/slidebox002. eps'

generating PDF file './output/slidebox003. pdf’

generating EPS file './output/slidebox003. eps'
Running slidebox.py has created an both an EPS chart and a PDF chart for each chartI D in our sample database.
If you inspect them, you will find that the data from the data source has been inserted into the relevant placesin
the chart to produce the correct behaviour.

NB This method of running the file with a double-click is fine for Macintosh users, but may cause problems on
aWindows system. On aMac, the dialogue box will stay on screen (with atitle of 'terminated’) once the
program has finished running. On a Windows system, the window appears, stays around for only aslong asit
takes to run the program and then closes. If the program terminates due to an error, an error message is
displayed - but is not on screen long enough to be visible. Thisiswhy for Windows users, we strongly
recommend starting the program from an MS-DOS consol e (avail able from the start menu e.g.
Start->Programs->A ccessories->Command Prompt). Once you have the console open, cd to the correct
directory and start the python script. For example:

C:\ pyt hon22\r| extra\ exanpl es\ gr aphi cs

pyt hon sl i debox_db. py
Thisway, if an error occurs you will definitely see the error message, and are not in danger of having a directory
full of last month's charts.

Page 34

Diagra Documentation $Revision: 42327 $

5.6 Example 2: Dotbox.py
Example Chart

{P

Database L ayout
Table: generic_dotbox
chartld | dotx | doty notes
1 1 Optional

2 2 2 Notes
3 2 1 Not Interesting
4 1 3 Ignore this... unless you want to.
5 0 0
6 3 3

Drawing Data Attributes

sel f. dat aSour ce

sel f. dat aSour ce. sql

sel f. dat aSour ce. gr oupi ngCol um 0

sel f. dat aSour ce. associ ati ons.size = 3

sel f. dat aSour ce. associ ati ons. el ement 00 = Dat aAssoci ati on(col um=0, target='chartld',

assocType='scal ar')

sel f. dat aSour ce. associ ati ons. el ement 01 = Dat aAssoci ati on(col um=1, target="Dot Box. dot XPosition',
assocType='scal ar')

Dat aAssoci at i on(col uim=2, target =" Dot Box. dot YPosi tion',
assocType='scal ar')

ODBCDat aSour ce()
' SELECT chartld, dot x, doty FROM generi c_dot box'

sel f. dat aSour ce. associ ati ons. el enent 02

Description

The data to be fetched from the dataSource in this caseis also all scalars. So the single datum chartlD is fetched
and used by DataAwareDrawing, dotx isretrieved from the dataSource and inserted into the attribute
dotXPosition in the widget DotBox, and doty isinserted into DotBox's dotY Position attribute.

Two other things to notice are that the dataSource can have columns that are not referenced by any of the
DataAssociations. Y ou can have datain the database that is used by other programs or departments which
doesn't affect the production of your chartsin any way (such as the 'notes column in this example).

Conversely, the widget that constructs the charts in your DataAwareDrawing can have attributes that are not
data-aware, and still have to be set manually using the Drawing Editor. In DotBox, the labels are held in the
xlabels and ylabels attributes. These are fixed and not set by the dataSource.

In this specific chart, the number of divisions inside the actual 'dot box' are set by the length of thelist of labels.
Using

x| abel s = ['Value', '"Blend, 'Gowth']
produced a dotbox where there are three boxes along the x axis, but

x| abel s =['Value', '"Blend', 'Gowth', 'Something else']

will produce one with four aong this axis. If you set either of these attributes to 'None' you will get an error, so
if you want to remove the labels for one of these DotBoxes, you need to do something like:

x| abel s = [None, None, None]
which removes the labels but keeps the rest of the structure.

Page 35

Diagra Documentation $Revision: 42327 $

Other things that we can mention about Dotbox include previews and borders.
= Preview

This controls whether your EPS files have a (cross-platform) TIFF image embedded as a preview. The
default is 1 - they are on. If you need small file sizes set thisto 0. If the number is greater than 1, the
previews are enlarged. This makes the file sizesalot bigger. This has no effect on output formats other than
EPS.

= showBorder

If you are only using PDF output, you can use the showBorder attribute. Set thisto 1, and it will add a border
around the edge of your widget. For historical reasons, this doesn't work with EPS.

One way to add a border that works in both PDF and EPS is to add the following:
background = Rect(0,0,self.w dth, self.height, fillCol or=None, strokeCol or=bl ack, strokeW dth=1)

Page 36

Diagra Documentation $Revision: 42327 $

5.7 Example 3: Horizontalbarchart.py
Example Chart

Germany [+ 16.9% (26.2%)
France [F— 14.9% (15.4%)
Ireland [F—— 10.9% (12.5%)

Netherlands [F——— 9.4% (14.2%)
Finland [F——— 7.7% (10.1%)
Sweden [+H—— 7.7% (6.3%)

Switzerland [F—— 7.5% (4.5%)

Italy C_FH—— 6.0% (2.4%)
Other [+— 155% (3.3%)
Cash [(F— 35% (5.3%)

Database L ayout
Table: generic_bar
chartld | rowld name valuel | value2 | value3
1 1 Widgets 17 25 32
1 2 Sprockets 19 28 35
1 3 Thingummies 13 20 30
2 1 Doodahs 20 29 21
2 2 Dohickies 11 12 11
2 3 Thingamajigs 32 17 12
2 4 Oojamaflips 14 15 21
3 1 Typel 12
3 2 Type2
3 3 Type3 2
3 4 Type4d 20
3 5 TypeX 12
3 6 TypeXI 15
3 7 TypeXIl 25
3 8 Unknown 8

Drawing Data Attributes

sel f. dat aSour ce = ODBCDat aSour ce()

sel f. dataSource. sql = ' SELECT chartld, nane, valuel, value2 FROM generic_bar"'

sel f. dat aSour ce. associ ati ons = Array(4, DataAssociation)

sel f. dat aSour ce. gr oupi ngCol utm = 0

sel f. dat aSour ce. associ ati ons. el ement 00 = Dat aAssoci ati on(col um=0,
target='chartld',
assocType='scal ar')

sel f. dat aSour ce. associ ati ons. el ement 01 = Dat aAssoci ati on(col utm=1,
target='"Horizont al Bar Chart . cat egor yNanmes',
assocType='vector')

sel f. dat aSour ce. associ ati ons. el ement 02 = Dat aAssoci ati on(col um=[2],
target='"Horizontal Bar Chart.data',
assocType="tmatrix')

sel f. dat aSour ce. associ ati ons. el enrent 03 = Dat aAssoci ati on(col um=3,
target='"Horizontal Bar Chart. | abel Row2',
assocType='vector')

Page 37

Diagra Documentation $Revision: 42327 $

To Removethe Labels
Hori zont al Bar Chart. | abel Row2 = None
Hori zont al Bar Chart. | abel Dat a = None

Hori zont al Bar Chart . cat egor yNames = None
change element01 and element03 in the dataSour ce.associations so that the target=None:

el ement 01 = Dat aAssoci ati on(col um=1, target="None', assocType='vector')
el enent 03 = Dat aAssoci ati on(col um=3, target='None', assocType='vector')

Description

A number of new things are introduced in this chart. The first one is the groupingColumn. Since each chart of
this type uses data from more than one row in thistable, our DataAwareDrawing needs to know which rows go
together. The groupingColumn attribute is what provides thisinformation. In this case (and most cases), the
grouping column is'0" - the first one in the row (like many of the other attributes of our chart classes, counting
these starts at 0). So, all the rows which have achartID of 1 go into the same chart (Widgets, Sprockets, and
Thingummies), al those whose chartID is 2 go into another and so on.

Unlike the previous two chart types, we have more than one assocType in this chart. We can now see both
'vector' and 'tmatrix' Data Associationsin action.

vector

self.dataSource.associations.element01 takes a vector of column 1 and places this in the categoryNames
attribute of the HorizontalBarChart widget.

Since this vector is specified as a single number (rather than alist - it's not surrounded by square brackets), it
returns a column of data for that chart. So, for achartld of '1', it returns:
['Wdgets', 'Sprockets', 'Thingumm es']
which become the categoryNames (the |abels on the far |ft).
Shown as adiagram, thislooks like this - the column outlined in red is the what is being placed into

categoryNames. Note that we are only showing the columns that the SQL retrieved from the database, not all
the columns that actually are in the database as above.

chartld name valuel | value2
1 Widgets 17 25
1 Sprockets 19 28
1 Thingummies 13 20

self.dataSource.associations.element03 (the other vector) also doesthis, but for column 3 in the data rather than
for column 1).

tmatrix

self.dataSource.associations.element02 takes a tmatrix (‘transform matrix’) of column 2 and places it into the
'data’ attribute of the widget Horizontal BarChart.

The column specified is alist with oneitem in it (‘[2]"), so the tmatrix returns:
((17.0, 19.0, 13.0),)
This can be imagined as the Data Association taking this red column:

chartld name valuel | value2
1 Widgets 17 25
1 Sprockets 19 28
1 Thingummies 13 20

and converting it into this before passing it on:;

It is also possible to specify more than one column by using alist with more than oneitemin it. If we used
('T2,3]"), the tmatrix would return:

Page 38

Diagra Documentation $Revision: 42327 $

((17, 19, 13), (25, 28, 20))
This can be thought of as taking these columns:

chartld name valuel | value2
1 Widgets 17 25
1 Sprockets 19 28
1 Thingummies 13 20
and converting them to:
17 | 19 | 13
25 28 | 20

Both vectors and tmatrices can be alot more complex than this - see chapter 6 for more details on that.
Other things of note include:
= AXes

Most charts will be implemented using axes - whether they are visible or not.

The chart Horizontal BarChart has two axes - the valueAxis (the one along the bottom), and the categoryAxis
(the one up the side). In this chart, they are both invisible. Both these axes have the following attributes:

Vi o1 bl oAxi s

vi si bl eTi cks
The visibleAxis attribute controls whether the actual axisis drawn - i.e. the main line that the ticks hang off.
The visibleTicks controls whether those ticks are displayed. The other attributes that control the ticks are
tickUp/tickDown in the valueAxis, and tickLeft/tickRight in the categoryAxis. Unlike the 'visible' attributes
we have just mentioned, these tick-related attributes are not Boolean. These 'tick’ attributes take a number
which isthe length of the tick. An easy mistake to make isto set visibleTicksto 1, but have both tickL eft and
tickRight set to 0. In this case, the ticks are displayed, but you can't see them due to them having a zero
length.

The visible attribute controls whether anything axis-related is drawn at all. This over-rides the other attributes
- you might have visibleAxis set to 1, but if visible is set to O, then it won't be displayed.

(For more information about how to use Axes, look in section 5 of the ReportLab Graphics Guide, available
on our web site at http://www.reportlab.com/downl oad.html)

= reverseDirection

This attribute is under the categoryAxis (i.e. it's Horizontal BarChart.categoryAxis.reverseDirection). It is
available to all bar charts. Asits name implies, if thisis set to 1, it reverses the direction of the plot. The bars
and their barLabels are then drawn in the order opposite to the way they arelaid out in the data (e.g. [1,2,3] is
reversed to [3,2,1]). This allows you to change if the bars are drawn from the bottom up or the top down
(inside a chart).

= labelRow2

Thisisan attribute available only to this particular chart (i.e.

rlextra/exampl es/graphics/horizontalbarchart_db.py). What is doesis allows you to have an optional second
row of labels appearing to the right of the main labels. If labelRow2 is None or an empty list then no these
labels do not appear.

labelRow2 uses the same format as the main labels (the attribute label Format). For information on using
format strings, look in section 4.5 (Formats and Formatters) in the chapter on "Working with Charts.

Like the other bar charts, the horizontalbarchart also has a number of attributes relating to the 'line. The
attributes lineLength, lineStrokeWidth and lineColor al refer to it. Thisline is the thin, horizontal line which
goes from the tip of the actual bar to the labels on the right hand side. LineL ength controls how long it is,
lineColor controls what colour it is and lineStrokeWidth controls its width.

Page 39

Diagra Documentation

$Revision: 42327 $

5.8 Example 4: Verticalbarchart.py
Example Chart

ﬂ [Index
1996 1997 1998 1999 2000
Database L ayout
Table: generic_bar
chartld | rowld name valuel | value2 | value3
1 1 Widgets 17 25 32
1 2 Sprockets 19 28 35
1 3 Thingummies 13 20 30
2 1 Doodahs 20 29 21
2 2 Dohickies 11 12 11
2 3 Thingamajigs 32 17 12
2 4 Oojamaflips 14 15 21
3 1 Typel 12
3 2 Type2 6
3 3 Type3 2
3 4 Type4 20
3 5 TypeX 12
3 6 TypeXI 15
3 7 TypeXIl 25
3 8 Unknown 8
Drawing Data Attributes
sel f. dat aSource = ODBCDat aSour ce()
sel f. dat aSour ce. sql = ' SELECT chartld, name, valuel, value2 FROM generic_bar'
sel f. dat aSour ce. gr oupi ngCol utm = 0
sel f. dat aSour ce. associ ati ons = Array(3, DataAssociation)
sel f. dat aSour ce. associ ati ons. el ement 00 = Dat aAssoci ati on(col um=0,
target='chartld',
assocType='scal ar')
sel f. dat aSour ce. associ ati ons. el ement 01 = Dat aAssoci ati on(col um=[2, 3],
target='Vertical BarChart.data',
assocType="tmatrix')
sel f. dat aSour ce. associ ati ons. el ement 02 = Dat aAssoci ati on(col um=1,

target='Vertical Bar Chart. cat egor yAxi s. cat egor yNanes',
assocType='vector')

Page 40

Diagra Documentation $Revision: 42327 $

To RemovethelLabeds

Ver tical Bar Chart. cat egor yAxi s. cat egor yNanes = None
Verti cal Bar Chart. bar Label For mat = None
to remove the labels in the legend - change thisline (in Vertical Bar Chart.legend):

col or NanmePai rs = [(PCMYKCol or (100, 65, 0, 30, spot Nane=" PANTONE 288 CV'), 'Fund'),
(PCMYKCol or (11, 11, 72, 0, spot Name=" PANTONE 458 CV'), 'Index')]

to:

col or NanePai rs = [(PCMYKCol or (100, 65, 0, 30, spot Nane=" PANTONE 288 CV'), None),
(PCMYKCol or (11, 11, 72, 0, spot Name=' PANTONE 458 CV'), None)]

(i.e. change the strings inside the single quotes into 'None' (No quotes))

change element02 in the dataSour ce.associations so that the target=None:
el enent 02 = Dat aAssoci ati on(col um=1, target=None, assocType='vector"')

Description

Like the other bar charts, VerticalBarChart has a reverseDirection attribute. In this case it is under
self.VerticalBarChart.categoryAxis.reverseDirection.

Under VerticalBarChart.barL abels are a number of attributes to do with the labels at the tops of the bars (the
ones that the 'lines' lead to). VerticalBarChart.barL abels.angle is the angle that these labels are printed at - in
this case 90°. The dx and dy attributes refer to the horizontal and vertical shifts that are applied to these labels
away from the bars they refer to. A negative number movesit down/to the left of its bar, and a positive number
moves it up/to the right. (For more details on these, refer to section 5.3 (‘Labels) of the Graphics Guide and
consult any autogenerated reference that you have).

While we are discussing barcharts, thisis the place to mention three attributes of the valueAxis:
= valueMin
= VvalueMax

= forceZero

valueMin and ValueM ax

If you know that your data will always be in a certain range, you can use valueMin and valueMax. ValueMin
sets as an absolute the lowest value that will appear on the chart, and this always appears at the bottom of the
chart. ValueMax does the same thing at the top of the chart (Of course, if you are using a horizontal barchart
then top and bottom become left and right). If you don't absolutely know the boundaries of your data, then it is
best to avoid using these. If you use them anyway, you may well find yourself in a situation where the bars flow
outside the chart and its axes.

Given the above warning, valueMin and valueMax can be used to fix the position of an axis. If the valuesto be
used are a mixture of positive and negative numbers, and you have not set the valueMin and valueMax, the axis
will 'float' up and down - i.e. it will appear in different placesin different charts, as dictated by the data. Setting
these attributes can avoid this.

As an example, for the above chart if you decided to set the valueMin and valueMax to 40, you would see the
following lines appear in the source window:

40
40

sel f. Vertical Bar Chart. val ueAxi s. val ueMax
sel f. Vertical Bar Chart. val ueAxi s. val ueM n

forceZero

When the valueMin and valueMax haven't been set, the chart will set its own lower and upper limits. For
example, if your data ranges from 50 to 100, the lower limit the chart chooses will be around 50. This can be
misleading. ForceZero forces the lower limit to be O, so the heights of the bars and the scaling are in amore
straightforward proportion to each other. If you start getting unusual behaviour in your charts, try setting
forceZero to 1 and seeing what effect this has.

ForceZero takes a boolean argument - 1 setsit to 'on' and forces zero to appear on the value axis, 0, setsit to 'off'
and allows the chart to omit zero. Y ou can right click on the forceZero attribute in the attributes window of the
Drawing Editor to set this.

As an example, if you decided to use forceZero for the above chart you would see this appear in the source
window:

Page 41

Diagra Documentation $Revision: 42327 $

sel f. Vertical BarChart. val ueAxis. forceZero =1

These two examples both have the same data set, but the one on the left has forceZero off, and the one on the
right has it on. Other than this forceZero attribute, these are the same chart.

forceZero=0 forceZero=1

Page 42

Diagra Documentation

$Revision: 42327 $

5.9 Example 5: Linechart.py

Example Chart

Li ne chart exanpl e woul d

Database L ayout

go here

Drawing Data Attributes

sel f.
sel f.
sel f.
sel f.

sel f.

Description

dat aSour ce

dat aSour ce.
dat aSour ce.
dat aSour ce.

dat aSour ce.

Table: generic_time_series
chartld date valuel | value3 | value2
119 02/12/1997 1.00 1.00
119 31/12/1997 1.00 1.00
119 31/01/1998 1.00 1.01
119 28/02/1998 1.02 1.02
119 31/03/1998 1.01 1.01
119 30/04/1998 1.03 1.02
119 31/05/1998 1.03 1.02
119 30/06/1998 1.03 1.03
119 31/07/1998 1.03 1.03
119 31/08/1998 1.02 1.05
119 30/09/1998 1.05 1.09
666 31/07/1992 1.03 1.13
666 31/08/1992 1.04 1.14
666 30/09/1992 1.04 1.14
666 31/10/1992 0.99 1.19
666 30/11/1992 1.05 1.25
666 31/12/1992 1.06 1.16

= (ODBCDat aSour ce()
sgql = 'SELECT chartld, date, valuel*100, val ue2*100, val ue3*100 FROM generic_ti me_ser

associ ati ons = Array(2, DataAssociation)

associ ations. el enent 00 = Dat aAssoci ati on(col um=0,
target='chartld',
assocType='scal ar')

Dat aAssoci ati on(colum=[[1, 2], [1,3],
target='chart.data',
assocType="tmatrix')

associ ations. el ement 01 = [1,4]],

Asstandard in this chart class, there is the facility to take up to three lines from the data and plot them. If the
column in the datais empty, it isignored. To see an example of this, typein 'test=3' into the entry field - the
chart graphic in the main the Drawing Editor window will change to one that uses the three columns of data
from the table generic_time_seriesin sampledatamdb

If you look under dataSource.associations, you will see the following line:

el ement 01 = DataAssoci ati on(colum=[[1, 2],

[1, 3],
target='chart.data',
assocType='"tmatrix')

[1, 411,

In the chart data, the date (column 1 - the second column in the database) is used to provide the x-coordinate in
sets of x-y pairs, which are then plotted as aline. Here is an example of what the datalooks likewhenitis

Page 43

Diagra Documentation $Revision: 42327 $

inserted into chart.data - thisis from test three again:

((19971202, 100.0), (19971231, 100.3), ... (20000630, 114.6), (20000731, 113.6))
((19971202, 100.0), (19971231, 101.0), ... (20000630, 133.58), (20000731, 132.60))
((19971202, 100.0), (19971231, 107.0), ... (20000630, 123.58), (20000731, 122.60))

Sections omitted for brevity - indicated by "..."

Adding morelines
If three lines are not enough, you can add extra lines to this chart. To add them, first change the SQL under
self.dataSource from:

sql = 'SELECT chartld, date, valuel*100, val ue2*100, val ue3*100
FROM generic_tine_series'

to

" SELECT chartld, date, val uel*100, val ue2*100, val ue3*100, val ue4*100
FROM generic_tine_series'

sql

adding as many extra as you heed. Then change the element under dataSource.associations from :

el enent 01 = DataAssociation(colum=[[1, 2], [1, 3], [1, 4]],
target='chart.data’
assocType="tmatrix'

~ -

to

el emrent 01 = Dat aAssoci ation(colum=[[1, 2], [1, 3], [1, 4], [1,5]],
target='chart.data',
assocType="tmatrix')
Make sure you have enough columns in your database, otherwise you will get an error message when you try to
test or run it:

Traceback (nost recent call last):

File "c:\Python22\rl extra\graphi cs\guiedit\datacharts.py", line 572, in testConnect
sel f. appl yDat aSet (sanpl e)

File "c:\Python22\rl extra\graphi cs\gui edit\datacharts.py", line 646, in appl yDataSet
y =rowc]

dexError: tuple index out of range

Removing lines
The first and most obvious approach is to remove them from the database. If a column in the database is empty,
the chart will ignore it.

A second way to change the data association so that the dataisn't being used. E.g., to plot only oneline, no
meatter what elseisin the database, change:

el enent 01 = DataAssociation(colum=[[1, 2], [1, 3], [1, 4], [1,5]],
target='chart.data',
assocType="tmatrix')

to

el enent 01 = DataAssoci ation(colum=[[1, 2]], target='chart.data', assocType='tmatrix')
yet another way of doing it isto change the SQL. For example, change:

sql = ' SELECT chartld, date, valuel*100, val ue2*100, val ue3*100 FROM generic_time_series'
to

sql = 'SELECT chartld, date, valuel*100, null, val ue3*100 FROM generic_tine_series'
The null in the SQL acts as a placeholder - it sitsin your SELECT statement but is ignored.

Changing the colour of thelines (and other line attributes)

All the attributes to do with the lines in this chart are found under chart.lines. Thisis a collection of attributes -
see section 4.4 Working with Collections for more general info about Collections.

If aline begins with the actua attribute name, then it appliesto all the linesin the chart. So
strokeWdth = 1

Page 44

Diagra Documentation $Revision: 42327 $

sets the width of every line (or at least every line that is plotting data) to 1 point. If aline starts with a number
inside square brackets, then it only appliesto that oneline. So

[1] . strokeCol or = ChbkYel | ow

changes the colour of the second line to the colour we have previously defined as ChbkY ellow (since we count
from 0). This happens to be the chartbook yellow we have imported from the file xxxcolors.py, but it could be
any color that reportlab.graphics recognises.

If you set colours for a number of lines, and the actual number of lines on the chart is greater than that, the
colourswill 'rollover'. If you set chart.lines.[0]strokeColor to red and chart.lines.[1]strokeColor to blue, then
proceed to actually have four lines plotted on your chart, then the first line will be red, the second blue, the third
red again, and the fourth blue again.

One attribute that is a dightly harder to explain is the strokeDashArray. If you want to have a dotted or dashed
line on your chart, you do this using the strokeDashArray. Y ou give this an argument of alist of numbers (e.g.
'15,2]' or '[4,2,8,2]"). The first number is the number of points that that dash will be on for, the second is the
number of pointsit will be off for. More complex patterns of numbers will produce more complex sequences of
dots dashes.

The attributes under chart.lines are:

st rokeDashArray
strokeWdth
st rokeCol or

Other attributes
= reversePlotOrder

This controls the order in which lines are plotted over each other. If the line which is most important in the
datais appearing underneath all the others change thisfrom 0 to 1 (or vice versd). This appears under the
attributes for the chart.

The following attributes are found under chart.yVaueAxis:
= requiredRange

TherequiredRange is the least range that should be displayed. For example, if you have data which ranges
from-1.21t0 0.75, if the chart isleft to set its own limits these will look like very big swings. Giving a
required range of 30 would (in this case) give you arange of -15 to +15 and put the numbers into perspective.
The default value for requiredRange for this chart is 30.

= |eftAxisPercent

leftAxisPercent controls whether or not a percentage sign ('%") is added to the end of labels. It can be set to O
or 1.

« |eftAxisOrigShiftIPC and leftAxisOrigShiftMin

These both refer to the lowest tick on the left axis of the chart. If it is 100 (or whatever your baselineis), it
can require a 'shift' so that it doesn't appear on the bottom line of the grid. If you want this shift to take place,
you need to set one of these attributes. Both perform the shift, but they differ on how it is specified.
leftAxisOrigShiftl PC specifiesit asaration (IPC = 'In Per Cent’), and leftAxisOrigShiftMin specifiesit an as
amount.

« SkipLLO

In some situations, you don't want the first tick label on the axisto appear. Setting SkipLLO to 1 is used to
skip thisfirst tick label.

Page 45

Diagra Documentation $Revision: 42327 $

5.10 Example 6: SectorCylinderChart
Example Chart

30000

1944,
20000 1120
1944
874
10000 1120
£874
338
£338
0

1year 3 year 5 year 10 year

Savings Split

Description
This exampleis mainly here to show you how to use a couple of attributes that haven't been mentioned so far.

All barcharts have the attribute of Symbol. Thisis used where you want a bar to be represented by a graphic
rather than the default rectangle that bars use. Y ou can use:

Synbol = ShadedRect (W dget)
This then allows you access to the attributes under Symbol and so allows you to use various shading effects.
Initially, you can set the start and end colours, which does pretty much as you would expect - the shading starts
with the start colour, shades through the number of gradations set in the numShades attribute and then finishes
with the end colour.

Y ou can then go on to set the cylinderMode attribute. Set to O, this gives you a ssmple shade (as we've just
described). Set it to 1, and it shades from the start colour to the end colour and then back to the start colour
again, giving theillusion of a cylinder.

Y ou can set the orientation of the shading using the attribute of the same name. This can be set to 'horizontal' or
'vertical'. Horizontal has the gradation going from top to bottom, vertical hasit going from side to side.

Another attribute you can set is style (under chart.categoryAxis). If you set thisto 'parallel’, having more than
one series in the chart data produces bars which are side by side (as we saw in the verticalbarchart.py in
example 5). If you set thisto 'stacked', the behaviour is different. Multiple seriesin the datalead to having bars
which are stacked on top of each other (or different coloured divisions of asingle bar, if that's the way you see

it).
Putting all these attributes together allows you to create a chart like the example above.

Page 46

Diagra Documentation $Revision: 42327 $

6 More about Using Axes

This section provides a pseudo-code description of the order in which various attributes are used in the most
commonly used axis - 'ValueAxis. This can be useful when trying to debug a new chart class or when figuring
out how one works.

It also gives brief descriptions of some attributes which only appear in these axes (such as leftAxisOrigShiftI PC,
and leftAxisSkipLL0).

Don't feel that you have to understand everything in this section. Feel free to skip it. The best way to understand
how these work is by using them, or by experimenting with them in the Drawing Editor. Thisis more for use
when you can't figure out why something is going wrong, rather than just figuring out how it works at all.

6.1 ValueAxis

Val ueAxi s:
set Position (called by the containing chart)
set the _X, _y & _length attributes passed from
above
configure(data) (called by the containing chart)
_set Range
conpute _valueM n and _val ueMax
either fromvalueMn, valueMax or directly fromthe data.
if _valueMn == _val ueMax:
force in a fake range of unit |ength.
if forceZero:
ensure _valueMn <= 0 <= _val ueMax
_rangeAdj ust:
do nothing nmethod to all ow hooking at this point
_cal cScal eFact or
_scal eFact or =(_val ueMax- _val ueM n)/ _l ength
_cal cTi ckmar kPosi ti ons
if self.valueSteps is set:
_tickVal ues = val ueSt eps
el se
_cal cVval ueSt ep
if valueStep is set
_val ueStep = val ueStep

el se
rawRange = _Val ueMax-_val ueM n
n = m n(maxi munili cks-1, _Iength/ m ni munili ckSpaci ng
raw nterval = rawRange/n
_val ueSt ep = next RoundNunber (raw nt erval)
ticks =[]
t = int(_valueM n/_val ueStep)*_val ueStep

if t>= ValueM n: append tick to ticks
t += _valueStep
whi |l e t<=_val uemax:
append t to ticks
t += _val ueStep
_tickVvalues = ticks
_adj ust Axi sTi cks
in the base class this is a null hook method
client classes can override to adjust the tick mark
posi tions
_configured = 1

dr aw
if visible
makeAxi s
if visibleAxis
determ ne join fromjoi nAxi sMode, joi nAxi sPos and j oi nAxi s
draw the axis line

makeTi cks
if visibleTicks
for tick in _tickValues:
v = scaled tick
draw tick line using up/down and the scal ed val ue

makeTi ckLabel s
for tick _tickValues
v = scaled tick
if label Text Format is a string use as a fornat
txt = | abel Text Format % tick

Page 47

Diagra Documentation $Revision: 42327 $

elif |abel Text Format is a |ist

txt = label TextFormat[i] (i = tick sequence num
elif |abel TextFormat is callable
txt = | abel Text Format (ti ck)

el se arise value error
draw the I abel using the scaled value v
and using the | abels[i] styles

NB: intheaboveif valueMin and valueMax are calculated from the data nothing forces them to be nice
numbers so that then the axis may not start or end on tick values.

Page 48

Diagra Documentation $Revision: 42327 $

/7 More on Data Sources

7.1 Making a Simple Chart Data Aware

As an example, we are going to create asimple bar chart and make it pull data from the example Access
Database (unpack sampledata.mdb from the file rlextra/exampl es/graphi cs/sampledata.zip). We'll assume you
have set up the ODBC connection and that the name is 'samplechartdata’.

Start the Drawing Editor, and select 'New' from the File menu. When the 'New Project parameters' dialog box
appears, select 'DataAwareDrawing’, give it a name (‘SampleDataChart’), and click on OK. Select 'Add New
Widget', click on 'HorizontalBarChart', give it a name (‘chart’) and click on OK.

Clickonchart = Hori zont al Bar Chart (Bar Chart), and change the x to be 75 and y to be 30 so it's
a it further from the edge.

Select '‘Add New Widget' again, typein "String(125, 124, 'l am astring’)" (since String has to be given its x and
y coordinates and some text), give it aname ('title) and click on OK.

So far we have just set up abasic static bar chart. The rest of this example will be concerned with making it data
aware.

ReportLab Drawing Editor 1Ol =]

File Options Actions Windows Help

I’ fepzchartz/doc/zampleD ataB arChart py, clazs SampleD ataChart].. D atadw,

=)

[am a string

o 1 130

4| | B

zelf Altrs

EPS info : =l

hackground None

chart = HorizontalBarChart (BEarChart) __|
chartId = 1

dataSource = ODECDataSource |DataSource)

fileNamePattern = 'drawvings03d’
formats = ['eps', 'gif'] ﬂ
1| | |
#|EPS_infa = [SFR', '] _jj
Source
if __name__=="__main__" #MORUMNTESTS
SampleD ataChart(]. savelformats=["pdf'.outDir="." inR oot=M one)

el

Find the line that says

dat aSour ce = Dat aSour ce(W dget)
Click on it, and change it so that it reads

dat aSour ce = ODBCDat aSour ce()

In the attributes window it will change so that it now reads

Page 49

Diagra Documentation $Revision: 42327 $

dat aSour ce = ODBCDat aSour ce(Dat aSour ce)

Double click on the data source line, and the attributes window will change to show you the dataSource
attributes. Normally, you would have to change the 'name' line to point to the correct ODBC data source, but in
this example file the default name is the correct one.

If you were using a stored procedure, you would also have to set the ‘password' and 'user' attributes while you
were here aswell.

Change the sgl line to read

sql = 'SELECT chartld, rowd, nane, valuel, value2, val ue3 FROM
generi c_bar’

Thisline tells the chart where to get the data from. In this case it is selecting the columns called chartld, rowld
(and so on) from the table called generic_bar in our Access database. We can get these names by looking at the
table in the database and choosing which columns we need to use.

The groupingColumn is the column that we will use to decide which datawill bein a chart. It might typically a
fund name or 1D, but could be anything. What mattersisthat it is the same for each element that will goina
single chart, but will not be repeated in other charts.

We do not have to change this, since it will remain as 0. When counting the columns, we start counting at O (as
programmers do). Therefore, column O is the first one we retrieve in the SQL - chartld.

For thisto actually allow us to do anything useful, we must associate it with the chartld of the chart. And to do
this, you must change the number of Data Associations to something greater than O.

Double-click on the line that says

associ ations = Array(0, DataAssociation)
you should now see aline that says

size = 0

Change this 0 to a number 4, and you will see a number of new lines appear, each one looking something like
this:

el enent 00 = Dat aAssoci ati on(col um=0, target=None,
assocType='vector')

Now we can make our first attribute data aware. Click on the first line 'element’ line, and change it to read

el ement 00 = Dat aAssoci ation(col um=0, target='chartld',
assocType='scal ar')

Y ou can either changeit in the text edit box below the attributes window, or you can double click on it and
change each element separately.

The column number is the number of the column in the SQL statement that we set earlier. As already
mentioned, O isthefirst column in thelist in the SQL statement - chartld. Target is where that item of datais
going to be 'plugged-into’ in our chart. In this case, it's a the top level, so we can just typein 'chartld’ without
having to say which part of the chart it refersto.

This line should now read:

el ement 00 = Dat aAssoci ation(col um=0, target='chartld',
assocType='scal ar')

If you go back to the top level of the chart, you can type 'test=1' into the entry field and hit enter. The chartld
will change to 1. Nothing on the chart itself will change yet, since we haven't plumbed any of it in yet, but it's

Page 50

Diagra Documentation $Revision: 42327 $

enough to show you that the chart is pulling data from the database.

Now we can make the title data aware. Normally, you would have a separate field for thetitle, but in this
example we are just going to use the name of the first column. To do this, double click on DataSource, then on
associations to get you back into the attribute for self.dataSource.associations. Click on el errent 01, and edit it
so it reads

el ement 01 = Dat aAssoci ation(colum=2, target="title.text',
assocType='scal ar')

The pulls the data from column 2 (the third column) in the SQL statement and fitsit in as asingleitem into the
attribute text of title (the String we added earlier).

Sometimes the best way of finding out what kind of data association is required for achart isto look at the
sample data it uses as a default, and see which kind of data association produces that kind of output. Then you
can figure out which columns (or rows) from the database you need to specify.

We have seen scalarsin use - here is aquick run down of the other data associations:
scalar

We have aready seen what ascalar is - it'sbasically just asingle variable. Y ou can think of it asa 1x1 matrix if
you want, but basically it'sjust asingle box which is pulled from the database and fitted into asingle slot in the
chart.

Examples of something we can use a scalar for:
t ext "W dget s’
X 125

Typical usefor ascalar:
String.text, Label.text, chartld

vector

Vectors are useful when you need to pull a column of data from a database, and use all of it (or at least all that is
in that set, as defined by the groupingColumn).

If you give a single number for the column, then one column will be returned as alist (it will be surrounded by
brackets). So, for something like this:

Dat aAssoci ati on(col um=1, target='Horizontal BarChart. cat egoryNanes',
assocType='vector")

you might get something back looking like this:
['Wdgets', 'Sprockets', 'Thingunm es']

Examples of something we can use a vector with a single number for:
cat egor yNanes = ('Cash', "Qther', "ltaly', 'Switzerland')
| abel Row2 = [5.3, 3.3, 2.4, 4.5]

If you give a more than one number for the column, they must be separated by a comma and enclosed in square
brackets. Then the data association will return alist (enclosed by square brackets) containing tuples of the
columns (enclosed by parentheses).

For something like this:

Dat aAssoci ation(colum=[1, 2], target='data', assocType='vector')
you might get something back looking like this:

[('a01', 'a02'), ('all', 'al2'), ('a2l', 'al2'), ('all', 'al2')]

Examples of something we can use a vector with a numbers in square brackets for:
data = [('"a01", "a02'), ('all', 'al2'), ('a21', 'al2'), ('all', 'al2')]

Typical usefor avector:
chart categoryNames, horizontal barchart data, pie chart data and legend names

matrix
Matrices aren't very often used. More often you will be using atmatrix (see below).

For a description of amatrix, look in section 7.3 (Data Association Types)

Page 51

Diagra Documentation $Revision: 42327 $

tmatrix
A tmatrix is a'transformed matrix'. It is used to convert avertical column (or columns) into a horizontal list.

The most common use is where the column is given as a single number inside square brackets (alist), the
tmatrix returns a tuple inside another tuple (parentheses inside other parentheses). So for something like this:
colum=[13], target='data', assocType='tmatrix'
Y ou might get back something looking like this:
((0.6, -1.3, -0.7, -0.4),)

Examples of something we can use atmatrix with a single number for (as seen in the default data):

data ((0.0, -0.10, 0.0, 0.3, 0.3),)

data [(3.5, 15.5, 6.0, 7.5)]
For charts where you need two data sets (e.g., where you are plotting one set of bars against another), the
column specification would be two numbers inside the square brackets:

colum=[8, 7], target="data', assocType='tnmatrix’
would give you something like:
dat a = ((-10.9, -7.1, 2.9), (9.6, 13.2, 29.5, -6.2))

Typical usefor atmatrix:
chart.data (for various barcharts)

rowmap

Rowmap is seldom used. It used for picking out individual cellsin arow and stringing them together, rather
than selecting awhole column.

Typical use for arowmap:
chart.data

If you need more information and examples on any one of these data associations, read section 7.3.

The sample datain our example barchart looks like this:

data = [(100, 110, 120, 130), (70, 80, 85, 90)]
So, it isapossihility that it is either a vector or atmatrix. Since tmatrices are used for the chart data for
barcharts, we can use one of them.

Looking at the SQL statement will tell uswhat we need to plot and what positionsitisin.

sql = 'SELECT chartld, rowd, nane, valuel, value2, val ue3 FROM
generic_bar'

We can see that we have valuel, value2 and value3 to plot on this chart, in positions 3, 4 and 5.
So we need to change a data association to read

el enent 02 = Dat aAssoci ation(col uim=[3, 4,5], target='"chart.data',
assocType='"tmatrix')

Thelast thing we will do isto will do is set up a data association for the bar category names (the names at the
left of each group of bars).

The names appear the third column of the data, so (since we count from 0) this becomes a column specification
of 2:

el emrent 03 = Dat aAssoci ati on(col utm=2,
target='chart. categoryAxi s. cat egor yNanes',
assocType='vector")

Going to the top level and doing test=1 (or 2 or 3) shows usthat the it works and is pulling data for the chart, the
title and the category labels from the database.

Thisexampleis saved asthefiler | ext r a/ exanpl es/ gr aphi cs/ sanpl eDat aBar Chart . py if you
wish to play with it further.

Page 52

Diagra Documentation $Revision: 42327 $

There are anumber of other things you can do to make it better - making it verbose so you can see it saving the
fileswhen you run it from the command line, changing the fileNamePattern, changing the bar colours so they
look better and so on. However, it is data aware and works, so anything el se doesn't really belong in this section.

7.2 Changing the Data Associations on an Existing Chart

There may be a number of ways you need to change the data associations on an existing chart. Y ou may need
to:

= Add anew column and data association,

= Remove an existing column and data association

= Change an existing column and data association in place
= Change the input to a stored procedure

Adding a new column and data Association

If someone has added an extra column to the database (or atered the stored procedure to return an extra
column), and you need to make us of it, you need to do the following.

= Edit the SQL to add in the new item,
= Add anew Data Association,
= Change the new Data Association to retrieve the correct data and target it to the correct chart attribute

Removing an existing column and data association

If you no longer need to use something stored in the database (or being returned by a stored procedure), you
need to

= Edit the SQL to remove the item you no longer require,
= Change the Data Association
= Either make sure the target has something sensible in it or remove it altogether

To edit the SQL, double-click ontheline'dat aSour ce = ODBCDat aSour ce(Dat aSour ce) 'inthe
attributes window, then double-click on the line that beginswith'sql = . You can then remove the name of
the item you no longer need. Thiswill no longer be retrieved from the data base.

To edit the data associations, find the line in the source window that refers to the item you want to remove, right
click on it and click on the button labelled 'Remove'’. This data association then disappears completely. Y ou will
notice that in the attributes window, it changes to something like this:

el enent 04 = Dat aAssoci ati on(col utm=0, target=None, assocType='vector')

If no other data associations below it are actually being used, you can change the size attribute to remove them
aswell.

To do this, go back to the top level (so the header of the Attributes window says 'self.Attr"), then double-click on
the line that says something like'associ ati ons = Array(3, DataAssociation)',clickontheline

that says'si ze =' and edit the number.

A simpler, 'quick and dirty' way of doing thisisto edit the Data Association so that the target reads 'None'. The
datais still retrieved from the database, but is not used. Thisisonly suitable if you don't want something to
appear in your chart any longer but the structure of the data in the database will not change.

If you are removing the data association because you want that element to be static (for example, atitle which
will now be the same on every chart rather than being data aware), you should edit it in the attributes window so
that it contains what you want. If you want to remove it completely, find any linesreferring to it in the source
window, right click on them and click on the 'Remove' button. Once all the lines that refer to it have been
removed, you can remove the line that added it to your chart in the first place (the one that begins with

'sel f. _add(sel f, ' andthenthename of that element and its attributes).

Page 53

Diagra Documentation $Revision: 42327 $

Changing an existing column and data association in place

Usually thiswill consist of either adding or removing data associations. If you use the column names (rather
than a"*") in the SQL, changing the order of the columnsin the database should not break anything.

Page 54

Diagra Documentation

$Revision: 42327 $

7.3 Data Association Types

This section gives a more formalized explanation of how Data Associations work, with more varied examples.
We covered how most of them work in the various worked examples and the previous section. Y ou can skip this

section unless you need it.

Assume we have abunch of columns:

a0l | a02 | a03 | a04
all | al2 | al3 | al4
a2l | al2 | al3 | a24
all | al2 | al3 | a34
b01 | bO2 | bO3 | b04
b1l | b12 | b13 | bl4
b21 | b12 | b13 | b24
b1l | b12 | b13 | b34
c01 | c02 | cO3 | cO4
cll | c12 | c13 | c14
c21 | cl12 | c13 | c24
cll | cl2 | c13 | c34

W W W W NINININIFP PP

scalar:

the column specification must be a scalar. The associated target is set to the value of that column in the first row

of the data block. Typically the chartld isascalar, it normally has a data association like

Dat aAssoci ati on(col um=0, target='"chartld', assocType='scalar')

Assuming that the grouping column is the default=1 then the row grouping will mean that chartld will receive
thevaluesil, i2 and i2 with each data block. Note that although we see more than one value in column 0
corresponding to the rows i1 only thefirst of such rowsis used for a scalar. So another scalar defined by

Dat aAssoci at i on(col unm=1, target='"bongo', assocType='scalar')

would mean that self.bongo received the values a01, b01 and c01.

vector:

the column specification can be a scalar or a sequence. With a scalar the target receives a row vector
corresponding to the selected column i.e. all the rowsin the group. When alist is used the elements of the

output vector become lists themselves.

SELECT 1d, Cl, C2 FROM exanpl e

colum=0, target='"chartld', assocType=' scal ar'
colum=1, target="data', assocType='vector'
chartld: 1

data:['aOl1l', 'all', 'a21', 'all']
chartld: 2

data:['bO1'", 'bl1l', 'b21', 'bll']
chartld:3

data:['cO1l", 'cll1l', 'c21', 'cll']

SELECT 1d, Cl, C2 FROM exanpl e

colum=0, target='"chartld', assocType=' scal ar'
colum=[1, 2], target="data', assocType='vector'
chartld: 1

data:[('a0l', 'a02'), ('all, 'al2'), ('a2l', 'al2'), ('all', 'al2")]

chartld: 2

data:[('bO1', 'b02'), ('bll', 'b12'), ('b21', 'bl2'), ('bll', 'bl2")]

chartld:3

Page 55

Diagra Documentation $Revision: 42327 $

data:[('cOl', 'c02'), ('cil', 'c12'), ('c21', 'cl2'), ('cll', 'cl2')]

matrix:
the column specification can be ascalar, alist or alist of lists. A scalar istreated as asingle element list.

as an example:

SELECT I1d, Cl, C2, C3 FROM exanple
colum=0, target='chartld', assocType='scal ar'
colum=1, target='cat', assocType=' nmatrix’
colum=[2, 3], target='dog', assocType=' matrix'
colum=[[1, 2], [2, 3]], target="data', assocType='matrix'
chartld: 1
cat:(('alOl',), ('al1',), ('a21',), ('al1l',))
dog: (('a02', 'a03'), ('al2', 'al3'), ('al2', 'al3'), ('al2', 'al3'))
data: ((('a01', 'a02'), ('"a02', "a03")),

((*all', 'al2'), ('al2', 'al3)),

(('a21', 'al2'), ('al2', 'alld)),

(('al11', 'al2'), ('al2', 'all3)))

chartld: 2

cat: (('b01',), ('b11',), ('b21',), ('bll',))

dog: (('b02', 'b03'), ('bl2', 'b13"), ('b1l2', 'b13'), ('bl2', 'bl3"))
data: ((('b01', 'b02'), ('b02', 'b03")),

(("b1l1', 'b12'), ('bl2', 'bl3')),

(("b21', '"b12'), ('bl2', 'Db13")),

(("b11', 'b12'), ('bl2', 'bl3")))

chartld:3

cat: (('c01',), ('c11',), ('c21',), ('cl1l',))

dog: (('c02', 'c03"), ('c12', 'c13"), ('c12', 'c13"), ('cl2', 'c13"))
data: ((('c0O1', 'c02'), ('c02', 'c03")),

(('c11', 'c12'), ('cl2', 'cl3")),

(('"c21', '"cl12'), ('cl2', 'c13')),

(('c11', 'c12'), ('cl2', 'cl13")))

tmatrix:
the column specification can be ascalar, alist or alist of lists. A scalar istreated as asingle element list.

When the column spec isasimple list asin HorizontalBarChart we get

SELECT 1d, C1, C2, C3, C4 FROM exanpl e
colum=0, target="chartld', assocType='scal ar’
colum=1, target='cat', assocType='vector'
colum=[2], target="data', assocType='tmatrix'
colum=4, target='1label', assocType='vector'
chartld: 1

cat:['a01', 'all', 'a21', 'all']

data: (('a02', 'al2', 'al2', 'al2'),)

| abel : ['a04', 'al4', 'a24', 'a34']

chartld: 2
cat:['b01', 'bl1l', 'b21', 'bll']
data: (('b02', 'bl2', 'bl2', 'bl2"),)
| abel : ['b04', 'bl4', 'b24', 'b34']

chartld:3
cat:['cO1', 'cl11l', 'c21', 'cll']
data: (('c02', 'c12', 'cl12', 'cl2'),)
| abel : ['c04', 'cl1l4', 'c24', 'c34']

As an example consider treating the above data as atime series with datesin column 1i.e. 801 isadate. The
dataarein columns 2, 3, 4 so we use pairs[1,2], [1,3] and [1,4], thisis used in linechart.py. For asingle chart
we should have alist of lists of pairs.

SELECT 1d, Cl, C2, C3, C4 FROM exanple
colum=0, target='chartld', assocType='scalar'
colum=[[1, 2], [1, 3], [1, 4]], target="data', assocType='tmatrix’
chartld: 1
dat a:
(((a01, a02), (all, al2), (a21, al2), (all, al2)),
((a01, a03), (all, al3), (a21, al3), (all, al3l)),
((a0l1, a04), (all, al4), (a21, a24), (all, a34)))

chartld: 2
dat a:

Page 56

Diagra Documentation $Revision: 42327 $

(((b01, b02), (bll, bl2), (b21, bl2), (bll, bi12)),
((b01, b03), (bll, b13), (b21, b13), (bll, b13)),
((b01, b04), (bll, bl4), (b21, b24), (bll, b34)))

chartld:3

dat a:
(((c01, c02), (cl1, c12), (c21, c12), (cl1, cl2)),
((c01, c03), (cl1, c13), (c21, c13), (cl1, c13)),
((c01, c04), (cl1, c14), (c21, c24), (cl1, c34)))

rowmap:
the column specification can be alist or alist of lists.

Rowmaps are used to pick individual elements out of arow of data and convert them into alist or list of lists.

SELECT Id, Cl, C, C3, C4 FROM exanple

colum=0, target='"chartld', assocType='scal ar'

colum=[1, 2, 3, 4], target='cat', assocType='rowrap'
colum=[1, 3], target='dog', assocType='rownap'
colum=[[2, 3], [1, 4]], target="data', assocType='rowrap'
chartld: 1

cat:['a0l', 'a02', 'a03', 'a04']

dog:['a0l', 'a03']

data:[['a02', 'a03'], ['a01l', 'al4']]

chartld: 2
cat:['b01', 'b02', 'b03', 'b04']
dog:['b01', 'b03']
data:[['b02', 'b03'], ['bOl', 'b04']]
chartld:3
cat:['cO01', 'c02', 'c03", 'c04']
dog:['c01', 'c03']
data:[['c02', 'c03'], ['cOl', 'c04']]
Thefollowing is an example of one in use, thisis from the QRI chart drawing2_returns.py:
dat aSour ce. associ ati ons. el erent 01. assocType="'r owrap'

dat aSour ce. associ ati ons. el ement 01. col um = [4,7,10, 13, 16]
dat aSour ce. associ ati ons. el enent 01. t ar get = 'chart. cat egor yAxi s. cat egor yNanes'

Page 57

Diagra Documentation $Revision: 42327 $

8 New Drawing Editor Features

8.1 Test Mode

Thisisn't actually a new feature, but it has been expanded dlightly. It is aso mentioned here since it works well
with the new diagnostic features mentioned below. Setting the chart attribute 'test' to 1 will fetch the first set of
data from the database in a data aware chart. Setting it to 2 will fetch the second, and so on. Thisisvery useful
when making sure that charts actually work.

One new feature of the test mode is that any 'test' attributes which are set can be automatically stripped out of
the chart code. If you have a number of tests set saved in the code it can both bloat the size of the code, and fix
the results of the chart rather than having them be dynamic. For example, if test was set to three then all charts
produced with that chart class would always be from the third set of data pulled from the database.

Toturn thison or off, select 'Filter test attr' from the Options menu.

8.2 Errors

If you have the 'log' window minimized to conserve space, even having error messages appearing in red text
won't draw them to your attention. The Drawing Editor now pops-up arequester telling you both that you have
had an error and what it is. If you want more details on it, you can then look in the log window.

: Atribute Change X|

Q Couldn't sek self.test=1

o |

When one of these pops-up, the Drawing Editor will also beep to get your attention. If you are finding this
annoying, you can toggle it off or on using the 'Error bells' item in the Options menu.

8.3 Diagnostics
Two new diagnostic features have been added to Guiedit: Debug_memo and a diagnostic chart.

Debug Memo

If adataaware chart is crashing midway through a chart run, we need away of gathering as much information
as possible about the cause. Debug_memo isaway of doing this.

To switch on DebugMemo, edit the line in the chart class (from the source window, by right clicking on it and
changing it in the Alter Edit dialog box) that has the 'go’ method. Thiswill be the last line in thefile (or near it),
and will ook something like this:

Sanpl eDat aChart (). go()
Add in 'debug=1', so it looks something like this:
Sanpl eDat aChart (). go(debug=1)

The next time the chart has a problem, it should save adebug file. It's file name will be in the form of
'RL_classname_pickle.dbg', so for the above example you would have afile called
'RL_SampleDataChart_pickle.dbg'.

The following information will probably not be suitable for users, but may be of assistance to anyone supporting
the chart classes with problems.

Page 58

Diagra Documentation $Revision: 42327 $

To see the output from a debug memo, start up Python and do the following (where yourDebugFileName is the

name of the file produced by DebugMemo):
fromreportlab.lib.utils inport DebugMeno
dbg = DebugMeno(f n=your DebugFi | eNane, node="r")
dbg. | oad()
dbg. show()

Thiswill show information including the traceback produced, the data which produced the error, any command
line arguments, the version numbers for various files and so on.

The Diagnostic chart

We have produced a chart which will show a number of useful pieces of information about your system. These
include the current working directory, any arguments used from the sgl of that chart and the path.

Thischartiscalled di agnosti c. py andislocatedinther | extra\ graphi cs\ gui edi t directory
(under your Python directory).

If you ever need to send it (either to us or whoever is providing support for your charts), make sure you export it
to asuitable format (e.g. GIF) and send that image.

Page 59

Diagra Documentation $Revision: 42327 $

9 Using 'Knockout’

9.1 'Knockout' - what it is, and why you might want to use it

Simply put, 'knockout' is when a colour which overlays another colour 'knocks out' anything below it. It'sthe
removal of colour in one areato accommodate another colour (i.e. it's an area of a background colour that does
not print in that colour).

Using knockout adds the complication that the version of document (or graph or diagram) that you see in guiedit
will not necessarily match the one you get when you print it out. What are the advantages? If you are using a
printer who prints the black (‘key") plate last, any black lines or grids used in construction of graphs and charts
will appear over the bars or lines that should be the focus of the chart. Knockout removes any lines under the
bars (or pie etc) so that they won't 'show through'.

Note that knockout is renderer specific. The whole concept is only useful in arenderer that supportsit.
Currently it is only supported in renderPS_SEP - our Postscript renderer. This meansthat it isn't possible to use
knockout with bitmaps (and isn't currently supported in PDF, though that may change in the future).

Consider the following example, which illustrates all aspects of knockout with two squares. It uses non-spot
colours with the two colours overlapping, providing 8 combinations. Thisishow it would look in Guiedit.

FOO FO1 LOO LO1
L10

F10 Fl1 L11
F=large squarefirst, digits are KO values for large/small squares

Knockout example

Going from left to right, top to bottom, we can see that from the labelling that:

= F0O hasthe large square drawn first and no knockout,
= FO1 hasthe large square drawn first and the knockout on for the small square,
L 0O has the small sguare drawn first and no knockout,

L 01 has the small square drawn first and the knockout on for the small square,
F10 has the large square drawn first and the knockout on for the large square,
F11 hasthe large square drawn first and the knockout on for both squares,

L 10 has the small square drawn first and the knockout on for the large sgquare,
L11 hasthe small square drawn first and the knockout on for both squares.

Notice how in Guiedit, when the large square is drawn first, the smaller square always appears on top of it, and
when the smaller square is drawn first the larger square always overwrites it.

The four illustrations on the next page show how it looks when split into its constituent colour separations.

Notice how where the little square has the knockout set, it '‘punches out' a hole in anything below it. The cyan
separation of the squares labelled FO1 and F11 show this quite well, where the small squares have knocked out
areas of the large squares.

Page 60

Diagra Documentation $Revision: 42327 $

Knockout example: Cyan separation

Knockout example: Magenta separation

Knockout example: Y ellow separation

F10 F11 L10 L11
F=large square firgt, digits are KO values for large/small squares

Knockout example: Black ('Key') separation

Page 61

Diagra Documentation $Revision: 42327 $

L01 and L11 also have the knockout set on the small squares, but nothing is punched out of the large square for
these. Thisis because our implementation of knockout is dependant on the ordering of objects.

When knockout is set on an object, it will knockout anything which has already been drawn (i.e. 'below' it in the
ordering of items on the canvas). In these LO1 and L 11, the large square hasn't been drawn yet when the small
oneis created, so there is nothing there to knockout.

Thisisaso illustrated by the squares labelled L10 and L11 in the Y ellow separation. Because the large square
has knockout set and is drawn second, it knocks out the smaller square - and since the smaller squareis smaller,
it isremoved completely.

9.2 How to use knockout
OK, so now we know what knockout is, how do we actually useit?

We saw about the spotName and density attributes for colours (CMYK and PCMYK colors) in section 4.2
("Working with Colours"). There is another optional attribute called 'knockout'. This parameter is optional, if it
isn't specified it defaultsto None. None in this case means 'use the default' (see below).

This means that knockout is an attribute of a colour rather than a shape or object. If knockout is set to 1, then all
objects using that colour will knockout anything underneath them in the way we've already seen.

As an example, thisis how the colour used for the big squares in the example is defined:
PCMYKCol or (100, 100, 0, 0, densi t y=80, knockout =0)

The default is to have knockout set to 1 - so everything 'knocks out'. This can be changed by adding aline to the
filerl_config.py. If you add the line:

knockout = 0

to the rl_config file, knockout will be turned off (and 'knockout = 1' turns it back on again). Omitting it
altogether also turnsit back on by reverting to the default.

Page 62

	Diagra Documentation
	Contents
	Overview
	About this document
	What is EPSCHARTS?
	What is Diagra?
	Other Documentation
	Limitations and Bugs

	Installation
	Using the Drawing Editor to Create Static Charts
	Introduction to the Drawing Editor
	Creating a New Project
	Adding Widgets
	Setting Widget Attributes
	Simplifying Attributes

	Saving Your Project
	Exporting to Different Formats
	Opening Existing Files
	Adding Primitives (another way to add widgets)

	Working with Charts
	Working with Collections
	Adding New Attributes to a Collection

	Working with Legends
	Working with Colours
	Working with Fonts
	Formats and Formatters
	DecimalFormatter
	NA_Label and naLabel
	Format Strings

	Creating Data Aware Charts
	Introduction to DataAwareDrawings
	Setting the Data Source
	Setting the Data Associations
	Example 1: Slidebox.py
	Running the resulting scripts
	Example 2: Dotbox.py
	Example 3: Horizontalbarchart.py
	Example 4: Verticalbarchart.py
	Example 5: Linechart.py
	Example 6: SectorCylinderChart

	More about Using Axes
	ValueAxis

	More on Data Sources
	
Making a Simple Chart Data Aware
	
Changing the Data Associations on an Existing Chart
	Data Association Types
	scalar
	vector
	matrix
	tmatrix
	rowmap

	New Drawing Editor Features
	
Test Mode
	
Errors
	
Diagnostics

	Using 'Knockout'
	
'Knockout' - what it is, and why use it
	
How to use knockout

