
ReportLab Europe Ltd
Thornton House, Thornton Road
Wimbledon
London SW19 4NG, UK

Diagra Documentation

February 2010

Diagra Documentation $Revision: 42327 $

Page 2

CONTENTS

1 Overview

1.1 About This Document

1.2 What is Diagra?

1.3 Other Documentation

1.4 Limitations and Bugs

2 Installation

3 Using the Drawing Editor to Create Static Charts

3.1 Introduction to the Drawing Editor

3.2 Creating a New Project

3.3 Adding Widgets

3.4 Setting Widget Attributes

3.5 Saving Your Project

3.6 Exporting to Different Formats

3.7 Opening Existing Files

3.8 Adding Primitives - and another way to add widgets

3.9 Miscellaneous Features

4 Working with Charts

4.1 BongoCorps's Drawing Classes

4.2 Working with Colours

4.3 Working with Fonts

4.4 Working with Collections

4.5 Formats and Formatters: DecimalFormatter, NA_Label and Format Strings

5 Creating Data Aware Charts

5.1 Introduction to DataAwareDrawings: Plotmode, fileNamePattern and outDir

5.2 Setting the Data Source

5.3 Setting the Data Associations

5.4 A practical example: Slidebox.py

5.5 Running the resulting scripts

5.6 Example 2: Dotbox.py

5.7 Example 3: Horizontalbarchart.py

5.8 Example 4: Verticalbarchart.py

5.9 Example 5: Linechart.py

5.10 Example 6: SectorCylinderChart

6 More about Using Axes

6.1 ValueAxis

6.2 BongoYValueAxis

Diagra Documentation $Revision: 42327 $

Page 3

7 More on Data Sources

7.1 Making a Simple Chart Data Aware

7.2 Changing the Data Associations on an Existing Chart

7.3 Data Association Types: scalar, vector, matrix, tmatrix and rowmap

8 New Drawing Editor Features

8.1 Test Mode

8.2 Errors

8.3 Command Line Arguments

8.4 Changing Environments

8.5 The Diagnostics

9 Using 'Knockout'

9.1 'Knockout' - what it is, and why use it

Diagra Documentation $Revision: 42327 $

Page 4

 1 Overview
1.1 About this document

This document started out as specialised documentation for a large customer's in-house systems which used
Diagra and the Diagra Drawing Editor. It is in the middle of being sanitised and made more generic to become
the Diagra documentation. This is a work in progress.

As such, it will be an overview of using the Drawing Editor with some very specific examples. It will cover the
Drawing Editor (guiedit) and some other software - how to install it and how to use it to create charts. It is not
intended as a complete set of documentation for every chart and every method for each chart. See the section on
'Other Documentation' (below) for info on how to get that.

1.2 What is EPSCHARTS?

EPSCHARTS was the original name for what has now evolved into Diagra and the Diagra chart server. You
may still see the name in some code and in a few other places in this manual. This is a hangover from previous
versions - it is not a separate product.

1.3 What is Diagra?

Diagra is a process for batch-generating charts - originally in Encapsulated Postscript but now in many other
formats as well. This has evolved through a number of iterations.

The current iteration is hopefully the right long-term workflow and goes like this:

■ The reportlab/graphics package contains code to let programmers generate standard chart types in several
formats

■ ReportLab has also written some special chart types for various customers with extra features

■ Programmers define some base "Drawing" classes including these charts.

■ Designers use a GUI tool (the Diagra Drawing Editor) to create several variants of these base classes. These
specify chart formatting attributes (size, color, label style etc.) and also data-processing attributes (input data
file name, output directory, file format (not just EPS). They save these as special python modules.

■ When you run one of these modules (e.g. with a double-click), it looks for a data source (CSV file or ODBC
database), reads it, and generates a batch of charts. These will look like the prototype, except that the data for
each chart is of course different.

1.4 Other Documentation

xxxxxxxx.epscharts.pdf and updatedoc.py

The most up-to-date and complete documentation on the various charts on your system will be the
documentation that is autogenerated.

There is a program called updatedoc.py (which should be in your xxxxxxxx/epscharts directory). When you run
this, it will run over your epscharts directory and create a document called 'xxxxxxxx.epscharts.pdf' in your
documentation directory.

This document contains all the classes (i.e. charts) that are available to you on your machine, along with a brief
description of what it does, the attributes you can set for it ('Public Attributes') and an example of what one
looks like.

Other documents

Both the core ReportLab toolkit and the ReportLab graphics package come with their own documentation. That
for the core toolkit is called 'userguide.pdf', and that for graphics is called 'graphguide.pdf'. Both these files
should be in the reportlab\docs directory under your Python directory.

1.5 Limitations and Bugs

At the time of writing we hope we now have an overall process which makes sense. However, each chart has
dozens of different attributes which need debugging. We therefore expect a period of rapid change while this
stabilizes and before all of the attributes work.

Diagra Documentation $Revision: 42327 $

Page 5

Unfortunately, some of these changes (especially if we completely delete some attribute) will means 'starting
again' with existing drawing files.

Occasionally, the drawing editor may get your settings confused (e.g. forcing you to have a full screen for your
editor screen). If this is the case, find the file called _guiedit.ini (which should be in the same folder as the
drawing editor program itself - guiedit.py). Delete it. This will be regenerated the next time you start up the
Drawing Editor, and should clear your problem.

Diagra Documentation $Revision: 42327 $

Page 6

 2 Installation
Please follow http://www.reportlab.com/software/installation/ for the most up-to-date instructions on installing
our libraries along with their dependencies.

■ Optional step (for Windows only): Creating a shortcut to the Drawing Editor

If you will be using the Drawing Editor on a regular basis, you should put a shortcut to it on your desktop to
make life easier. To do this, right click on your desktop and 'New' then 'Shortcut'. Then copy this line
c:\Python26\pythonw.exe c:\python26\Lib\site-packages\rlextra\graphics\guiedit\guiedit.py and paste it into
the location text box that appears in the dialogue, and save.

Double clicking on this icon will now have the same effect as double-clicking on the original: it will start up
the Drawing Editor, but without having to navigate to it in Windows Explorer. And the change to the target
in the Properties box means that it doesn't open an extra shell window when it runs.

Diagra Documentation $Revision: 42327 $

Page 7

 3 Using the Drawing Editor to Create
Static Charts
3.1 Introduction to the Diagra Drawing Editor

The Diagra Drawing Editor (guiedit.py) is the graphical editor for EPS charts. If you look in your 'rlextra'
directory (under Python22), you should find a 'graphics' directory which should in turn have a 'guiedit'
subdirectory. Inside that is the GUI Editor program - 'guiedit.py'. Double-clicking on that should give you
something like this:

From the top, the elements of this display are:

■ Title bar
Just like any other program, this is where the name of the program is displayed, and which contains the
Minimize, Maximize and Close buttons.

■ Menu bar
This is the area which contains drop-down menus - click on 'File', 'Options', 'Actions', 'Windows' or 'Help' to
see the associated menu. Also, notice how if you leave the cursor over one of the menu titles, a floating box
appears with some text telling you what it is (you might know these as 'tooltips' if you are a Windows user,
or 'balloon help' if you are a Mac user). Most buttons and fields in the Drawing Editor have these. If you find
them annoying, you can turn them off by using the 'Tooltips off'/'Tooltips on' item in the Options menu.

■ Main Window
The large black area which currently has the words 'ReportLab GUI Drawing Editor' in it is the 'Main
Window'. This is the area which will contain the graphical displays of your charts.

■ Log Window
The Drawing Editor keeps a log of its actions. These are displayed in their own window (the Log Window).
This window can be turned off if you don't find them useful or to make more room on screen. You can do

Diagra Documentation $Revision: 42327 $

Page 8

this by going to the 'Windows' menu and selecting 'src window on', which will then toggle to off (and change
colour from green to red).

Some other points to notice before we move on to doing something useful using the Drawing Editor. The frame
the contains all these other windows is resizable. If you move the cursor to the left or right hand edges of the
Drawing Editor window, it will change into an horizontal arrow with arrowheads at either end. When the cursor
looks like this, you can click-and-drag to move the edges out horizontally. Similarly, when you place the cursor
over the top or bottom edges of the window, it changes to a vertical arrow with arrowheads at the top and
bottom. This means that you can click-and-drag to move the edges vertically. And when you place it over the
bottom left hand corner, it changes to a diagonal arrow - you can then move it horizontally and vertically at the
same time to resize it in both directions.

There is a thin line over the divider between the main window and the log window (just over where it says
'Log'). If you move the cursor over it, you see it changes to the vertical arrowheads. You can click and drag to
shrink or grow this window vertically. If you look at the line, it has a small square box or button almost at the
right hand edge. If you notice a box like this on any other divider in the Drawing Editor, then you can
click-and-drag it to resize the windows it borders.

From the Options menu, select the item 'Searched Packages'. You should get a dialogue that looks like this:

This lists the packages that the Drawing Editor searches to find charts. You may have to add a package (i.e. a
directory which contains the reusable Python code to create the charts, as well as a file called __init__.py) if you
cannot find the charts that you need (but you know they exist on your hard disk). 'Package Exclusions' from the
same menu provides you with a similar dialogue which does the same thing for the excluded packages - those
that are deliberately ignored when the packages are being imported.

As well as the immediate function of this pop-up, it's worth noting the two small coloured arrows at the left and
right. Whenever you see arrows like this in a dialogue in the Drawing Editor, you will know that they have to do
with navigation. In this case they point up and down - if you have clicked to highlight a package, these up and
down arrows move you up and down the list. As we will see later, they can also be used for navigating the
attributes in a list as well as just moving up and down the list itself.

3.2 Creating Static Charts: Creating a New Project

The 'New' item from the File menu allows you to create a new Project. This will pop-up a dialogue which
prompts you for the name of the project, and allows you to chose the name of the class from which it will be
inheriting.

Diagra Documentation $Revision: 42327 $

Page 9

As you can see from this illustration, we'll be using the class called 'Drawing' as the basis for our new static
chart. The illustration below shows you what we get when we click on the OK button to open it up. This doesn't
look very exciting, since the Drawing class just gives us a blank canvas to work on. All of our static drawings
will inherit (directly or indirectly) from this class. You should also notice some more windows appearing - more
on those in a few paragraphs.

Diagra Documentation $Revision: 42327 $

Page 10

3.3 Adding Widgets

We can add contents to this drawing. In the 'Actions' menu there is a menu item called 'Add Widget'. A widget
is a reusable shape that can be 'drawn'. Widgets can be as simple or as complex as you want. You can create
your own widgets, but in most cases you will be modifying existing, pre-created widgets.

If you go 'Actions' and select 'Add Widget', you should get a dialog appearing that looks similar to the one
below. For the purposes of this example, scroll down it until you see 'Pie' and click on it. You should see 'Pie'
appear in the box labelled 'Widgets?'. Then give it a name - enter 'NewPie' in the box labelled 'New Widget
Name'.

As you can see (below), as well as the main and log windows we already had when we started the Drawing
Editor, we now have three new windows: the 'Attributes' window (labelled 'self Attrs'), the entry field and the
'Source' window. If you can't see any of these windows, click on the dividers to resize things until you do (e.g.,
you may have to grab and drag the bottom edge to see the Log window).

Diagra Documentation $Revision: 42327 $

Page 11

The attributes window shows a list of attributes that this class has. The 'self' in 'self Attrs' refers to the fact that
these attributes are for the base class (rather than for one of its attributes). Some of these attributes themselves
have attributes that you can change. For example, double click on the line that says 'NewPie = Pie(Widget)'. The
'self Attrs' changes to 'self.pieChart Attrs' to show that you are now changing the attributes for the pie chart
rather than for the class as a whole, and the list of attributes displayed changes to those for the pie chart
(NewPie).

If you have finished with the attributes for NewPie, you can go back to the attributes for the whole chart by
clicking on the red up-arrow on the right hand side of the entry field. The blue down-arrow on the left takes you
down a level ('drilling down') if that attribute has attributes that you can change. Double-clicking on a class with
attributes does the same as the blue arrow, but double clicking on the red text with the class name ('self Attrs')
does the same as the red up-arrow (i.e. takes you up a level).

The entry field shows the attribute you have currently selected from the Attribute window. You can make
changes in this one-line window, and these will be reflected in the Attributes window as soon as you hit enter.
These changes also show up in a more graphical way in the main window, so you can see exactly what those
changes do to the look of a chart.

The source window shows the Python source code. This may be especially useful to you if you are a
programmer, but is also very useful if you're not. Looking in the source window, you should see a line that looks
like this:

self._add(self,Pie(),name='NewPie',validate=None,desc=None)

This is the line the actually adds the widget for the Pie chart. If you right click on it, you should see another
dialog pop up:

Diagra Documentation $Revision: 42327 $

Page 12

This alter edit dialog is very handy. It allows you to alter the text (to do things such as changing the name of a
widget - if you decided to call it PieChart rather than NewPie), and to totally remove an object that you have
added by mistake. If you do want to close the source window, go to the Windows menu and select 'Src window
on' - this will toggle it to off. You can always toggle it back on later.

3.4 Setting Widget Attributes

By default, the width and height for this pie are 100x100. This is pretty small - but you can change this. If you
have clicked on the line that said 'NewPie = Pie(Widget)' in the attributes window, you should see a scrollable
list of all the attributes for the pie appear in the Attributes window. Click on the line that says 'height = 100' -
this should now appear in the entry field below it. You can click in this and edit it. Change the 100 into 200. Do
the same for the width attribute. The chart in the main window should now be bigger. You can also change the x
and y attributes - these are the x and y co-ordinates for the bottom left hand corner of the widget. Change the x
to 25, and the y to 10 - you'll see why later.

It is still just a circle though - it has no data to display. Most of our charts (except for a couple of extremely
simple ones) have an attribute called 'data'. Our NewPie is no exception. The data attribute is a list, and
currently it just contains the number 1. You can change this by clicking on the line that says 'data' in the
attributes window, and then editing it in the text entry box. The data must be a list (i.e., be contained in square
brackets), and it must be separated by commas. It doesn't matter if you use whitespace between the elements or
not. So,

[23]
[1, 2, 3]
[2,3,4]

are all valid lists for the data attribute, but these are not:

(1,2,3)
1,2,3
'1,2,3'

Most widgets will have attribute checking switched on. This means that they check if what you are entering is a
valid data type for that attribute. If you try and enter an invalid list for data - or if you try and enter something
that isn't suitable for any other attribute, say a string instead of a number - you will get a 'traceback'. The one for
this attribute would look something like this:

Traceback (most recent call last):
 File "\rlextra\graphics\guiedit\guiedit.py", line 920, in attrChange
 self.redraw(action='redraw')
 File "\rlextra\graphics\guiedit\guiedit.py", line 718, in redraw
 self.newDrawing()
 File "\rlextra\graphics\guiedit\guiedit.py", line 826, in newDrawing
 self.project.getSample()
 File "\rlextra\graphics\guiedit\guiedit.py", line 392, in getSample
 exec "%s\n_x=%s()\n" % (self.buildText(),self.className) in locals()
 File "<string>", line 14, in ?
 File "<string>", line 13, in __init__
 File "reportlab\graphics\widgetbase.py", line 49, in __setattr__
 File "reportlab\lib\attrmap.py", line 72, in validateSetattr
AttributeError: Illegal assignment of '23' to 'data' in class Pie

The last line is the most important - that's the one telling you what has gone wrong. In this case, you'd have
entered '23' instead of '[23]'

Width, height, x, y and data are common attributes for most of the widgets you will be working with.

Simplifying Attributes

When you change attribute properties you will see lines being added to the source code in the source window.
When you are assigning a new value to an attribute that you have already modified, the new attribute
assignment is simply appended to the code, with the last assignment being the one that is effected. An example
of this in the screen shot below showing multiple attempts to set the chart.height.

Diagra Documentation $Revision: 42327 $

Page 13

A list of the attributes, might be handy for viewing a history of what has been changed. However after a period
of time seeing particular attributes assigned multiple times might seem confusing. If you want to remove the
duplicate settings you have two options, either manually by selecting the 'File' menu then selecting 'Simplify
properties' or automatically when you save your chart by selecting 'Save on Simplify' in the 'Options' menu
(saving you chart is covered the subsequent section).

Manualy Selecting 'Simplify properties' Setting 'Save on Simplify'

After you have run 'Simplify Properties', or have 'Save on Simplify' set to 'on', if you look at the 'log' window
you should see that the duplicates have been removed.

Diagra Documentation $Revision: 42327 $

Page 14

3.5 Saving Your Project

If you have made all the changes described above, you should have something that looks like this:

We've now made enough changes to be obvious that the chart has changed. Now we can save it. From the File
menu, select the option 'Save'. This gives you a save dialog which allows you to navigate the file system. You
don't have to save the file on your local machine - you can save it on any mapped drive or server that is
available to you. Enter the filename of 'NewPieChart' and click on 'OK' to save this chart. The Drawing Editor
will automatically append a .py suffix onto the filename (to show it is a Python file).

Diagra Documentation $Revision: 42327 $

Page 15

When the main window is visible again, notice how the file line above the main window now contains the file
name.

Now we have finished with the immediate changes and saved the chart, we can close it. Select 'Close' from the
file menu. The main window goes back to black with the 'ReportLab GUI Drawing Editor' line to show that we
have no chart loaded.

If you have forgotten to save the changes you have made to the chart, you will see a dialog box like the one
above. Click on 'No' to keep this chart open and go back and save the chart, or click on 'Yes' to close it and lose
any changes you have made.

3.6 Exporting to Different Formats

The Drawing Editor also allows you to save your file in a bitmapped graphic format. To do this, go to the 'File'
menu and select 'Export'. A 'Save As' dialogue box will appear, but it has the addition of a 'save as type'
dropdown box. You can select from the available formats (including Jpeg or GIF suitable for web use,
Postscript or Encapsulated Postscript, TIFF and PNG).

It's not advisable to export a file without saving it using the 'save' or 'save as' options. Once a file has been
exported, it is impossible to convert it back again. Exporting a file is a strictly one way process.

3.7 Opening Existing Files

Once you have created a chart, you shouldn't have to use the 'New' menu item again. That should be a
once-per-project step.

Back in the Drawing Editor, you can select 'Open' from the file menu to open an existing chart. For this
example, open the file NewPieChart.py. Let's make another couple of changes:

Double click on the 'NewPie = Pie(Widget)' to take you back into the attributes for the PieChart. Click on the
line 'labels = None', which should appear in the entry field ready to be changed. None in this context is a Python
object that means 'null', and should be used where you don't want an attribute to be used (rather than trying to
use empty strings, empty lists etc which may cause unexpected behaviour). You can change it to something like

Diagra Documentation $Revision: 42327 $

Page 16

'labels = ['a', 'b', 'c']' to make labels appear. The labels attribute accepts a list in the same way data does. (You
should also see why we suggested making the x for the pie 25 - if it wasn't this big, you wouldn't have been able
to see the label).

If you select 'Save' from the file menu, the chart will be saved to the file that it came from. Since the Drawing
Editor already knows the file name, you will not be asked to give one, and no save dialogue will appear. If you
want to save this to a different file name, use the 'Save as' item from the file menu instead.

3.8 Adding Primitives - and another way to add widgets

As well as adding widgets from the menu, you can also add them from the text entry box (ie, the "entry box"
with the white background). So to add the pie chart, we could have typed

add(Pie(), 'NewPie')

You may have to highlight and remove what is already there to do this - in this case highlight "background =
None", hit delete, and type in the line above.

The 'Pie' is the name of the widget, and the 'NewPie' is the name that we will be referring to it by. Pie must be
followed by those brackets. If you know the structure of the Pie widget, you can use those brackets to pass in
attributes for it to use, but in most cases it is easier to leave them empty and set them using the Drawing Editor.

The Drawing Editor doesn't just allow you to add widgets in this way. You can also add graphics primitives. If
you type

add(Rect(0,0,20,20), 'Rectangle')

you will see a rectangle appear in the bottom left hand corner. The numbers in the brackets represent the
following attributes: x, y, width, height. You can also do this for other graphics primitives (such as Circle and
Ellipse). Notice that because these are primitives rather than widgets, you have to give them certain required
parameters, rather than just let them use their own defaults and edit them later. For more information about what
these are and how to use them, look in the Graphics Guide documentation (or read the code and docstrings in
reportlab\graphics\shapes.py).

Some examples:

add(Circle(20,20,20), 'MyCircle')
add(Ellipse(20,20,20,20), 'MyEllipse')
add(Line(0,0,20,20), 'MyLine')

As well as the more obvious graphics primitives, you can also add lines of text to a chart. As an example, type
this into the text entry box:

add(String(125,250, 'Example Bar Chart'), 'Title')

Looking at the chart, nothing seems to have changed. This is because, while the string has been added it's been
added in a place off the top of the chart. To make it visible, edit the height and width attributes (of the chart, not
the pie). Make them something sensible like a width of 250 and a height of 275 (to allow for the title). The other
alternative is of course to move the string to a different place on the chart - but the important thing to notice is
that there isn't any sanity checking of where you put it.

When we added the string, we gave it a y attribute of 125, which is in the centre of the chart. To make sure the
string actually is centred, you need to edit its attributes. Click on the line in the attributes window which says
'Title = String(Shape)'. Right-click on the textAnchor line, and you can see the options to select from. 'Start'
makes the x position the start of the line of text, 'end' makes the end of the line appear at the x position, and
'middle' centres it. You can also change the font to be used for the string, its size and various other attributes
from here.

By this point, you should have enough knowledge to put together a static chart at least as complex as the one
below:

Diagra Documentation $Revision: 42327 $

Page 17

Diagra Documentation $Revision: 42327 $

Page 18

Miscellaneous Features

A few quick notes about Drawing Editor features that we haven't mentioned yet:

■ Zoom set

This item (from the Windows menu) allows you to zoom in or out of the chart. In other words, it magnifies
or decreases the size of the image in the main window.

■ Clear log window

This item (from the Windows menu) removes all the text from the log window. Useful if you have large
amounts that you no longer want to scroll through.

■ Reload module

This item (from the Actions menu) make the Drawing Editor reload a module. Useful if you have edited or
updated the Python file for one a class or drawing while you have the Drawing Editor still open. Instead of
shutting it down and restarting to make sure the Drawing Editor notices the change, you can use 'reload
module' and select the module to reload and update.

■ Debug

This item (from the Option menu) turns on some debugging information printouts. These are normally only
of use to developers.

■ Exit

This item, in the File menu, quits out of the Drawing Editor program.

Diagra Documentation $Revision: 42327 $

Page 19

 4 Working with Charts
This chapter covers some general details of the chart classes and their attributes.

4.1 Working with Collections

A number of attributes for charts are 'Collections'. A collection in this instance is a 'smart collection class' under
the hood which allows you to change attributes for just one or for all of the items in a set. These sets can be the
slices in a pie chart, or the labels or barLabels in a line chart. They even allow you to change the attributes for
an item which doesn't exist yet!

If you have a source distribution, open the file named 'example_collections_1.py' from the 'samples' directory.
Click down into the attributes for the pie chart. You should see a line like this:

slices = TypedPropertyCollection(WedgeProperties(PropHolder))

This line represents a collection. Double click on the line to show the attributes of the collection:

[0].fillColor = darkcyan
[1].fillColor = blueviolet
[2].fillColor = blue
[3].fillColor = cyan
[8].fillColor = green
fillColor = pink

These attributes fall into two different categories.

If a line in a collection (such as the 'slices' collection above) starts with a number in square brackets, that line
refers only to that numbered element in the collection. So '[2].fillColor = blue' sets the filling only for the third
wedge in the chart (since we start counting from 0). Any attribute that appears in a collection can have a
numeric index added as a prefix to define that attribute for one element of the collection. In our pie example,
you could set strokeWidth, strokeDashArray, strokeColor, popout, labelRadius or fillColor for any individual
slice just by adding a prefix like '[0].' to the start of the line.

In contrast, if a line in a collection begins with an ordinary attribute name, then that line sets the default value
for all of the analogously-named numbered attributes in the collection. For example, the last line above makes
all the wedges in your pie chart pink by default.

You should be careful when mixing the two kinds of statements. One of the second type (with no numeric
index) sets the attributes for all the elements in the collection - but only if none of the second type are used. The
kind with the numeric index always over-ride the more general kind of statement. These general, un-numbered
statements then become a default which is used as a fallback when no specific statement applies to a particular
element. (e.g. if you define a default fillColor with one of these un-numbered statements, then define the
fillColor for elements [0], [2] and [4], the default fillColor statement would apply to elements [1] and [3]).

If our chart has fewer than 9 slices, then you might expect the second-to-last line in the pie chart example above
to cause a problem. It doesn't. You should think of these statements as prescriptions for what to do to a member
of the collection if it exists - if it doesn't this prescription is silently ignored. This also means that when you are
using the Drawing Editor to edit a chart, you can edit the attributes for an element which isn't even in the list
which appears in the attributes window.

Another thing to be aware of with collections is the way that they 'rollover'. When you set the attributes for
numbered members of a collection, if there are more members than you have set the attributes for, then the
attributes will rollover. If you have set '[0].fillColor' as red, '[1].fillColor' as green and '[2].fillColor' as blue,
then the fillColor for '[3]' would flip back to the start and become red, [4] becomes green, and so on. (Actually,
this isn't quite the case for the standard pie chart since it has the first four fillColors set in the base class, but this
principle works in most other places).

Adding New Attributes to a Collection

To add a new numbered attribute to a collection, simply enter a new atrribute in the entry field. For example, to
add a new attribute specifying the stroke width for the first pie slice:

[0].strokeWidth = 1

Diagra Documentation $Revision: 42327 $

Page 20

4.2 Working with Legends

This section shows how to construct legends. Legends are a little more involved than most other chart
components, in that they commonly need to pull other information from other things on the drawing; their size
and shape may depend on the number of data series in a chart, which isn't always known at design time.
Legends have just undergone an upgrade in December 2004 to allow them to 'connect to' and configure from the
charts they are attached to.

If you have a source distribution, the example charts herein will be located in a subdirectory called 'samples' and
are named as 'example_legend*.py'. All of these can be opened in the Drawing Editor, and directly executed to
create a PDF output chart.

The drawing below shows us getting started with a simple drawing containing a vertical bar chart, title string,
and Legend object. The Legend has all the normal default values EXCEPT THAT we have positioned it by
setting x=220, y=20, and boxAnchor="southeast". The latter choice means that the (220,20) reference point is at
the bottom left of the legend. When you first add the legend, you might not even see it as y = 0 and the legend
'grows down' from the top of the drawing.

Diagra Documentation $Revision: 42327 $

Page 21

North South East West
70

80

90

100

110

120

130

Chart with Legend - example 3

red

blue

green

pink

yellow

The legend is, of course, the bit on the right with the multiple circles. This does not agree with the chart
because, at the moment, it has no knowledge whatsoever of the chart's existence.

We'll just give a quick guided tour of the main attributes; we advise you to open up this example in the drawing
editor or to create one yourself and explore. A legend consists at minimum, of a number of 'swatches' of colour,
each with a string attached. The overall position is set with the x, y and boxAnchor attributes. The actual data
can be explicitly set through the colorNamePairs attribute, if you wish. Let's say we know there will be two
series, and want to configure automatically.

There are two main ways to get a legend working correctly. First, you can explicitly configure it. If (as is very
often the case), you know exactly how many series there will be, and the labels to go with them, you could set
this:

colorNamePairs = [(red, 'widgets'), (green, 'sprockets')]

And you would then see a legend like this:

North South East West
70

80

90

100

110

120

130

Chart with Legend - example 2

widgets

sprockets

The other thing you may want to do is adjust the position of the swatches, especially if there are a lot of them.
Pie charts might have a dozen or more. The basic layout is to arrange them in columns, up to a maximum numbe
of swatches per column; the legend has an attribute columnMaximum with default value 3, meaning that after 3
swatches are created it will start a new column. If you had twelve colorNamePairs entries and left the
columnMaximum on 3, you would get 4 columns. You can set this to a high number to arrange all your swatches
vertically, or to 1 to force them to spread out horizontally. There are also a number of attributes to specify the
size of the swatch rectangle itself (dx, dy), the vertical and horizontal separation between swatches (deltax,
deltay), the space between swatch and text (dxTextSpace), and whether text appears to left or right of the
swatches (alignment).

Diagra Documentation $Revision: 42327 $

Page 22

Until v1.20 (Dec 2004) all swatches were simple rectangles, and a separate LineLegend would draw lines with
markers. From Jan 2005 onwards, you are advised to use the plain old Legend class, and if you want a different
shape under direct control you can set the swatchMarker attribute. For example, if we assign as follows:

legend.swatchMarker = makeMarker('Circle')

...then we get circle shaped markers, and can then drill down into the marker object to further configure the size,
colour, thickness etc. The default kinds of Marker at present are 'Square', 'Diamond', 'Circle', 'Cross', 'Triangle',
'StarSix', 'Pentagon', 'Hexagon', 'Heptagon', 'Octagon', 'StarFive', 'FilledSquare', 'FilledCircle',
'FilledDiamond', 'FilledCross', 'FilledTriangle','FilledStarSix', 'FilledPentagon', 'FilledHexagon',
'FilledHeptagon', 'FilledOctagon', 'FilledStarFive', 'Smiley'

This kind of direct control is simple and should let a designer position a legend exactly the way they want.
While it may seem perverse to set the shapes and colours yourself, it's also probably the simplest way to do
things in cases where there are many charts arranged on a drawing.

Connecting charts to legends

In other cases, one really wants the legend to intelligently connect to the chart and configure itself, as the chart
data might vary dramatically at runtime. Two cases where you might often want this are for Pie charts with
many slices, where it's tedious to repeat a long list of colour names and the number is variable; and for line
charts with markers, where quite a lot of attribute-setting would be needed to make the legend match the chart.
The new Auto feature allows this to be done at several levels. (This has been added in a backward compatible
way and is therefore not very elegant - be warned! In Version 2.0 we hope to reimplement some attributes more
sensibly). To do things automatically, you must set the colorNamePairs object to a new magic 'Auto' value, and
tell it how to find the chart to configure itself from. In the example below, we have switched to a LinePlot object
called 'plot', and defined markers for the lines. The Drawing object can thus refer to it as 'self.plot', and we pass
this to the Auto object as follows:

colorNamePairs = Auto(chart=self.plot)

That's the main thing we need to do - the chart now picks up the number and colour for each series, and draws
the lines. It cannot yet say anything more intelligent than 'series 0' and 'series 1' for the series names. We'll cover
this in a moment.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1

2

3

4

5

6

Example 4 - auto legend

series 0

series 1

The problem is that until now we have had no need for any 'series name' in the chart classes. We've added a
hidden attribute to most of the charts so you can set this if you wish, and legends can pull it out. Each chart has
an collection attribute, whose name regrettably varies, for saying how each series should appear; for a bar chart
this is called 'bars', for a pie it is 'slices' and for a line plot it is 'lines'. If one drills into this in the editor, one can
set these on specific series by typing "[n].name='myname'" for series n. Defining two of these will result in the
following chart:

self.plot.lines[0].name = 'sprockets'
self.plot.lines[1].name = 'widgets'

Diagra Documentation $Revision: 42327 $

Page 23

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1

2

3

4

5

6

Example 5 - auto legend with series names

sprockets

widgets

Diagra Documentation $Revision: 42327 $

Page 24

4.3 Working with Colours

Our graphics framework supports the RGB and CMYK color models as well as specific spot colours. The
examples so far have all involved attributes like 'red' and 'yellow', which actually refer to RGB colours. Here's
what we have done so far when editing a color:

Some users prefer to use CMYK colours while others,for example web designers, may want a specific RGB
value. Here are the things you could type into the line currently saying 'yellow':

For the RGB model, with each number from 0 to 255, we use the standard Color class from reportlab.lib.colors:

fillColor = Color(128,0,0)

People used to writing HTML documents may find "HTML-style" colors useful:

fillColor = toColor('#FF0000')

For the CMYK model, with each number ranging from 0 to 1, we use the class CMYKColor:

fillColor = CMYKColor(1.00,0,0.83,0.47)

Many people in the graphics world think in percentages and like to specify a range from 0 to 100. We therefore
have a PCMYKColor class as well - the 'P' standard for 'Percentage' - which is exactly the same except for the
numeric range:

fillColor = PCMYKColor(100,0,83,47)

CMYKColor and PCMYKColor accept the spotName and density attributes. In our core open source model, they
don't do anything and are ignored when we write Postscript, but an additional (commercial) renderer will know
what to do with this information. So we can now specify an "Institutional Green" if we wish, or do inks of
varying densities:

CMYKColor(1.00,0,0.83,0.47,spotName='PANTONE 349 CV',density=1.00)

Finally and most usefully, we can just define some constants in an external file. Create a module called, say,
"yourcolors.py", and put in on the Drawing Editor's search path somewhere (for example in
rlextra/graphics/guiedit). In it we can put named constants like this:

from reportlab.lib.colors import CMYKColor

#Your Company's Institutional colors

Diagra Documentation $Revision: 42327 $

Page 25

InstGreen = CMYKColor(1.00,0,0.83,0.47,spotName='PANTONE 349 CV',
 density=1.00)
InstKhaki = CMYKColor(0.32,0.23,0.51,0.07, spotName='PANTONE 875 CV',
 density=1.00)

the Drawing Editor will find these colors, and you can use them just like the standard ones. We suggest that
where required each department creates a module of their own like this.Warning: don't try to redefine 'red', and
don't define the same name in more than one module; we don't want to promise which definition would be found
and used.

4.4 Working with Fonts

Diagra can use exactly the same fonts in all output formats. It uses Type 1 fonts and needs an AFM and a PFB
file for each. We covered their installation earlier. If creating fonts outside of the 'standard 14'
(Times/Helvetica/Courier with bold and italic, Symbol and ZapfDingbats), you may need to add a couple of
lines when rendering a drawing.

To use a Type 1 font (aka a Postscript font), you will need at least two files. So for example, for the font Avenir
you could have files including:

aeblo___.PFB
aebl____.PFB
aeblo___.AFM
aebl____.AFM

AFM file

The AFM file is the 'Adobe font metrics' file. The AFM file contains important info about the characters in the
font (the 'glyphs'). This includes information such as their height, width, info on the bounding box, hints and
kerning and other things that are collectively known as the 'font metrics'. It is vital to have the AFM file if you
want to use any ReportLab software to embed fonts.

■ If you don't have the AFM file for an Adobe font, you can get them from the Adobe site.
ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/

■ To find the Adobe package number, you can check their type catalogue:
http://www.adobe.com/type/main.html

PFB file

The PFB file is the 'printer outline file' or 'Printer Font Binary'. The PFB file is used by our software if you need
to produce bitmaps (by setting 'formats' to be gif, jpg etc), and to produce the previews in EPS files.

PFM files

You may also see PFM files. The PFM file is the 'metrics file' or 'Printer Font Metrics' file. Essentially, this is a
reduced version of the AFM file. Most of the information our software needs is missing from this file.

Once you have these files, they have to be located somewhere where our software can find them.

If you look in the file rl_config.py (located in the Python22/reportlab/ directory), you will find a section that
looks something like this:

places to look for T1Font information

T1SearchPath = ('c:/Program Files/Adobe/Acrobat 5.0/Resource/Font', #Win32, Acrobat 5
 'c:/Program Files/Adobe/Acrobat 4.0/Resource/Font', #Win32
 '%(disk)s/Applications/Python %(sys_version)s/reportlab/fonts', #Mac?
 '/usr/lib/Acrobat5/Resource/Font', #Linux, Acrobat 5?
 '/usr/lib/Acrobat4/Resource/Font', #Linux
 '%(REPORTLAB_DIR)s/fonts' #special
)

If you have extra fonts that you want to use and embed, you have two choices. You can edit the rl_config.py file
and add the existing directory where your AFM and PFB files are located to this section. Or, you could add your
font files to one of these directories which the Diagra software already know about. A good one is
'%(REPORTLAB_DIR)s/fonts' (i.e. C:\Python22\reportlab\fonts on a standard PC installation).

Typically, if you are running in a server environment, you'd put the AFM and PFB files in the fonts directory
under the reportlab installation. If you are running in a desktop environment, it might be easier for you to add
your font directories to the section in rl_config.py instead.

Diagra Documentation $Revision: 42327 $

Page 26

Once you have done all this, you can then use any of these fonts from the Drawing Editor. Anything which has a
'fontName' attribute can be given the name of one of these fonts. (If in doubt, the name we use is the same as the
one which appears in the AFM file on the line which begins 'FontName').

4.5 Formats and Formatters

DecimalFormatter

In any place in a chart where you might require a format, you can use the decimal formatter. The most obvious
examples are the barLabelFormat and valueAxis.labelTextFormat in a bar chart.

What you would do is find the correct line in the window, highlight it so that you can edit it in the Drawing
Editor's text entry field, and replace the text after the equals sign with 'DecimalFormatter()'. Don't forget the
brackets at the end! You should then see something which resembles one of these lines (though of course the
details would change with the location):

barLabelFormat = DecimalFormatter(places=2, decimalSep='.',
 thousandSep=None,
 prefix=None,
 suffix=None)
valueAxis.labelTextFormat = DecimalFormatter(places=2,
 decimalSep='.',
 thousandSep=None,
 prefix=None,
 suffix=None)

This then allows you to do things like change the decimal separator from a full stop to a comma (to have
numbers appearing in the continental style of '1,00' rather than '1.00'), and add a prefix (for things like '$' and '£')
or suffix (for things like '%'). This also allows you to specify how many numbers should appear after the
decimal point (or comma) - this is set by the 'places' attribute.

NA_Label and naLabel

In some circumstances, you will have a chart which takes data from a database which contains nulls (i.e. total
empty cells which return a 'None' value to Python or a 'Null' value to SQL). By default, these cells are ignored
(so, for example, no bar and barLabel appear for them in a bar chart which instead just leaves a gap where the
bar should be).

This isn't always what you want. The required behaviour may be to leave out the bar but to insert a label which
says 'n/a' (or 'results not in' or some other snippet of text).

This is what the attribute naLabel is designed for. A number of the charts have an attribute called nalabel .
Initially, this starts off as:

naLabel = None

You should change this to read

naLabel = NA_Label()

The Drawing Editor should then expand it to read something like:

naLabel = NA_Label(BarChartLabel)

These na_labels start of as Times-Roman with a fillColor of black and the text being 'n/a'. They do not start with
the same formatting as your normal barLabels, and use their own separate formatting, which allows you to set
them to a different colour or style if you want them to stand out.

NB: These labels only get used for cells which return Null (or None). '0' is often a perfectly valid piece of data,
so if you want your chart to display these na_labels in these situations, you should change the behaviour of your
database to returns nulls rather than zeroes in these locations.

Format Strings

You will probably be using format strings in a number of places when you use the Drawing Editor to create or
modify charts. As an example, here is a fileNamePattern taken from a DataAwareDrawing.
(DataAwareDrawings are designed to pull data from a data source and produce multiple files using this data,
and their fileNamePattern allows us to do give them distinct names which share a common root).

fileNamePattern = 'drawing%03d'

Diagra Documentation $Revision: 42327 $

Page 27

The '%' sign means that we are using a format string. Anyone who has used C's sprintf() format or is familiar
with string formatting in Python will recognise this. The 'd' in this case stands for 'decimal' (i.e. a decimal
integer). Others you may (rarely) want to use include 'f' for a floating point number, 'o' for octal, 'x' or 'X' for
hexadecimal, 'i' for integer (identical to 'd'), and 's' for string. The '03' refers to a zero fill - in this case to three
digits. If you use 'f', the chartId is converted to a floating point number, and you can use a '.' between two
numbers to specify a field width and a precision.

Examples:

The following examples assume that we are using chartIds of 1, 2, 3 and that we are only producing PDF
output:

fileNamePattern result

drawing%d drawing1.pdf, drawing2.pdf, drawing3.pdf

drawing%03d drawing001.pdf, drawing002.pdf, drawing003.pdf

drawing%07d drawing0000001.pdf, drawing0000002.pdf,
drawing0000003.pdf

drawing%f drawing1.000000.pdf, drawing2.000000.pdf,
drawing3.000000.pdf

drawing%1.2f drawing1.00.pdf, drawing2.00.pdf, drawing3.00.pdf

drawing%s drawing1.pdf, drawing2.pdf, drawing3.pdf

drawing%5.5f drawing1.00000.pdf, drawing2.00000.pdf,
drawing3.00000.pdf

drawing3.2%f drawing3.21.000000.pdf, drawing3.22.000000.pdf,
drawing3.23.000000.pdf

drawing03%d drawing031.pdf, drawing032.pdf, drawing033.pdf

NB Notice how the last two are wrong: they both have the numbers before the '%' sign rather than after it, so the
numbers are just treated as part of the alphanumeric filename prefix rather than the formatting string. These
examples all use 'drawing' as this prefix, but you could of course have used 'Foobar' or anything that you
required.

Diagra Documentation $Revision: 42327 $

Page 28

 5 Creating Data Aware Charts
5.1 Introduction to DataAwareDrawings: Plotmode, fileNamePattern and outDir

The main difference between a static drawing and a data aware drawing is that a data aware drawing inherits
from the 'DataAwareDrawing' class (which in turn inherits from 'Drawing'). In practice, you can do anything
with a DataAwareDrawing that you can with a Drawing, but it has a number of additional abilities.

To start a DataAwareDrawing, start up the Drawing Editor, select 'New' from the File menu and choose
'DataAwareDrawing' for the Base Class Name. Give it a name - such as 'NewDataAwareDrawing'. This is also a
blank canvas in the same way that Drawing was.

The attribute window should contain something like the following:

EPS_info = ('Dept', 'Your Company')
background = None
chartId = 0
dataSource = DataSource(Widget)
fileNamePattern = 'drawing%03d'
formats = ['eps', 'gif']
height = 200
outDir = '.'
preview = 1
sampleData = None
showBorder = 0
test = 0
transform = (1, 0, 0, 1, 0, 0)
verbose = 0
width = 400

Plotmode

One attribute that we didn't see when starting off with a Drawing was the 'plotmode' (the line that looks like:

formats = ['eps', 'gif']

This is the format that the output will appear in. The square brackets around it show it is a list. Each item in it
should be surrounded by quotes. We can have multiple output formats (as long as the renderers can handle
them).

Diagra Documentation $Revision: 42327 $

Page 29

Valid plotmodes are currently 'pdf', 'gif', 'png', 'tif', 'jpg', and 'eps'.

fileNamePattern

DataAwareDrawings are designed to pull data from a data source and produce multiple files using this data.
Therefore we need to have some sort of filename convention to tell them apart. The fileNamePattern allows us
to do this. The default of :

fileNamePattern = 'drawing%03d'

will give each file a name in the form of 'drawing001'(plus a file type suffix), 'drawing002', 'drawing003' and so
on. You can edit this to change both the prefix text and the number added to it.

The '%' sign means that we are using a format string. See section 4.5 for more information about these.

outDir

As well as changing the name of the files produces, you can change where they are saved. The line

outDir = '.'

sets the output directory for these files to be the same as where the script is. You can change this to a
subdirectory, use '..' for navigation back up the file system, and either give absolute or relative path names.

EPS_info

This only useful when producing EPS output. It contains the Department and Company info that are inserted
into the EPS header. It is ignored if you use any other output format.

background

This allows you to use a background for the whole drawing (not just a chart inside the drawing). You can use
any colour that we recognise (look in reportlab\lib\colors.py and any other files where you have defined colours
such as perhaps yourcompany\yourcolors.py) for lists of these. The RML2PDF has a good colorized list of these
in Appendix A("Colors recognized by RML")). The following is an example of how to do one of these coloured
backgrounds - this uses pink, but you can use any colour. Once you have added the background, you should see
a new attribute appear in the attribute window which reads 'background = Rect(SolidShape)'. You can now
double click on this to change the colour, add a stroke color and stroke width (the stroke in this case being an
outline around the Drawing), and various other attributes.

background = Rect(0,0,self.width, self.height, fillColor=pink, strokeColor=None)

As well as plain colours, you can also use other widgets. For example, entering the following into the entry box

background = Grid()

gives you a grid as the background, whose attributes you can then edit in the usual way (making it horizontal
instead of vertical, changing whether it uses coloured stripes or lines and so on).

5.2 Setting the Data Source

A DataAwareDrawing can contain one (and only one) 'DataSource'. Currently, all our data-aware classes use an
ODBC database, but you can use a CSV file - and eventually you would be able to use other sources (such as an
Excel spreadsheet).

For this example, you'll need to set up your database before you do anything involving data in the Drawing
Editor. We provide an example Access database called 'sampledata.mdb'. You should register it with the data
source name 'samplechartdata'. On a Windows machine, this involves going to the Control Panel and selecting
'Data Sources (ODBC)' (or a control panel with a similar name, which may or may not be under 'Administrative
Settings' depending on which version of Windows you are using).

To make the chart connect to a database, you need to edit the line that reads

dataSource = DataSource(Widget)

so that it reads

dataSource = ODBCDataSource()

You should then see it change in the attributes window. You can then double click on that line to set the various
attributes of the datasource. Once you have done this, the attribute window should look something like this:

Diagra Documentation $Revision: 42327 $

Page 30

associations = Array(0, DataAssociation)
groupingColumn = 0
name = 'samplechartdata'
password = ''
sql = 'SELECT * FROM generic_pie'
user = ''

The name in this case is 'samplechartdata', though it could be any name you have previously set up as an ODBC
data source with the OS.

If your ODBC datasource connection requires a username and password (for instance if you're using SQL server
without Windows Authentication), you can append them to the datasource name separated by backslashes. So to
connect to dsn 'mysqlserver' with username 'john' and password 'secret', set the dataSource.name property to
'mysqlserver/john/secret'

The sql attribute is the line of SQL(structured query language) to be used to pull the data from the database. In
most cases you can either use

'SELECT * FROM yourdatasource'

which gives your chart access to everything in the database (where your datasource is the name of the
datasource as given in samplechartdata), or

'SELECT columnname, columnname, columnname FROM yourdatasource'

which will only give you the specifically named columns from the datasource - whether there are any other
columns in the database or not.

5.3 Setting the Data Associations

Once you have the data from the database, then you must define what to do with it in your chart. This is what
the data associations are for.

When you first start a data source, there are no data associations set up. Double-clicking on the 'dataSource =
ODBCDataSource(DataSource)' line brings up a set of attributes in the attribute window which includes:

associations = Array(0, DataAssociation)

This shows that you have no data associations set-up yet. You can either edit that line in place, and make the
zero into the number of data associations you will need, or double click on it, which will show you an attribute
that says:

size = 0

where you can then edit the zero in the same way.

Whichever way you do it, the size line then changes (e.g. to 'size = 4'), and you will see a number of lines in the
pattern of:

elementXX = DataAssociation(column=n, target=None, assocType='vector')

The column is the position in the list of data retrieved by the SQL statement that we saw under the dataSource.
Notice how the count of columns starts a 0 rather than 1, and that column 0 is usually the chartId.

So, for example, if the SQL was

'SELECT chartId,numberOfBoxes,label,value FROM generic_slidebox'

then:

■ column 0 would be the data in the column of the database called 'chartId',

■ column 1 would be that of 'numberOfBoxes',

■ column 2 would be 'label' and,

■ column 3 would be 'value'.

Typically, column 0 is held by chartID which is used in setting the filename for the chart.

If you use a SQL statement which explicitly names the database columns you want to retrieve in this way, it is
less fragile and likely to break than one where you pull everything using a '*'. If you use a 'SELECT * FROM'
type SQL statement, it will break if anyone inserts another column between two of yours and changes the order

Diagra Documentation $Revision: 42327 $

Page 31

of the columns you are retrieving. Naming them saves you from this risk.

The target is the name of the variable in your chart that this data should be plugged into. This should always be
qualified by using the name of the widget (or other object) where that variable is set. So you would use
'PieChart.data' rather than just data (if you wanted to set the data attribute in the widget PieChart), or
'chart.xValueAxis.labeltextFormat' rather than just 'labeltextFormat' if you wanted to set the format of the label
text in the X-Axis of a linechart called 'chart'.

And lastly, the assocType is the type of association used to retrieve the data. You can pull single or multiple
columns or rows from a database or just a single cell. Valid values are 'scalar','vector','matrix', 'tmatrix' (from
transformed matrix) and 'rowmap'. For more info on these, look in individual examples and the following
chapter ('More on Data Sources').

Diagra Documentation $Revision: 42327 $

Page 32

5.4 A practical example: Slidebox.py

The previous descriptions were probably pretty confusing without any solid examples to compare the against, so
this section will rectify that. We will work through 6 examples (which should be available in
rlextra/examples/graphics directory - those that work off the example database use the have the suffix of
_db.py). In all of these examples you will see an example of what the finished chart looks like, along with the
data in the sample database and the Data Source and Data Association lines.

Example Chart

1 2 3 4 5 6 7

Source: ReportLab

Database Layout

Table: generic_slidebox

chartId numberOfBoxes label value title

1 7 source: Guinness 6 Beer Sales

2 7 source: Hoegaarden 5 Beer Sales

3 5 source: Youngs 4 Beer Sales

Drawing Data Attributes

#Autogenerated by ReportLab guiedit do not edit
from rlextra.graphics.guiedit.datacharts import ODBCDataSource, DataAssociation, DataAwareDrawing
from reportlab.graphics.shapes import _DrawingEditorMixin
from reportlab.graphics.charts.slidebox import SlideBox

class SlideBoxDrawing(_DrawingEditorMixin,DataAwareDrawing):
■def __init__(self,width=400,height=200,*args,**kw):
■■apply(DataAwareDrawing.__init__,(self,width,height)+args,kw)
■■self._add(self,SlideBox(),name='SlideBox',validate=None,desc='The main chart')
■■self.height = 40
■■self.width = 168
■■self.dataSource = ODBCDataSource()
■■self.dataSource.sql ='SELECT chartId,numberOfBoxes,label,value FROM generic_slidebox'
■■self.dataSource.associations.size = 4
■■self.dataSource.associations.element00 = DataAssociation(column=0, target='chartId', assocType='scalar')
■■self.dataSource.associations.element01 = DataAssociation(column=1,
 target='SlideBox.numberOfBoxes',
 assocType='scalar')
■■self.dataSource.associations.element02 = DataAssociation(column=2,
 target='SlideBox.sourceLabelText',
 assocType='scalar')
■■self.dataSource.associations.element03 = DataAssociation(column=3,
 target='SlideBox.trianglePosition',
 assocType='scalar')
■■self.verbose = 1
■■self.formats = ['eps', 'pdf']
■■self.outDir = './output/'
■■self.fileNamePattern = 'slidebox%03d'

if __name__=="__main__": #NORUNTESTS
■SlideBoxDrawing().go()

Description

This example can be found in the directory rlextra/examples/graphics, with the filename of
slidebox_db.py. slidebox.py is similar, but runs off a CSV file rather than a database.

In this first real example, we have given you the whole code that the Drawing Editor produces. For all of the
other charts you will only be shown the self.dataSource attributes (and you should never need to look at the raw
code if you are using the Drawing Editor). This chart is the simplest (from a data standpoint), so we can both
show you what the code looks like in its raw state, and point out a few other pieces of information at the same

Diagra Documentation $Revision: 42327 $

Page 33

time.

The are only three pieces of data that a slidebox chart requires:
numberOfBoxes: the number of coloured and numbered boxes that make up this widget (in the example graphic
above, it is 7).
label: the text that is displayed at the bottom right of the widget (in this case 'source: ReportLab')
value: the number where the triangle pointers should be displayed.

Looking at the code of slidebox.py (in the 'Drawing Data Attributes' section above), the first line we need to
consider is

self._add(self,SlideBox(),name='SlideBox',validate=None,desc='The main chart')

This is line that adds the widget 'SlideBox' to the basic DataAwareDrawing. If we had been making this up from
scratch, we could have achieved the same thing by selecting 'Add New Widget' from the Action menu, clicking
on SlideBox in the list of widgets, and typing in the name 'SlideBox' in the 'New Widget Name?' text box.

The 'self.height' and 'self.width' lines, as you would expect, set the height and width of the resulting drawing.
The 'self.dataSource' line sets things up so that we can use a database as the source for our data.

The 'self.dataSource.sql' line shows the line of SQL we use to pull this data. This looks in the table
generic_slidebox in the database we have already specified and retrieves, for each chart items from the columns
named 'chartId', 'numberOfBoxes', 'label' and 'value'.

The four lines that start 'self.dataSource.associations' set up what to do with this data. Each of these has an
assocType of 'scalar'. Scalars are the simplest type of data association. They retrieve a single cell from the
database (actually a 1x1 matrix). So for each chart, we retrieve the single element 'chartId' (which is not inserted
into the widget that we use to create the slidebox since it is used by the DataAwareDrawing in constructing the
filename), the single element 'numberOfBoxes' which is inserted into the 'numberOfBoxes' attribute of the
widget SlideBox, the element 'label' which is inserted into sourceLabelText attribute of SlideBox, and the
element 'value' which is inserted into the attribute trianglePosition of the SlideBox widget. You can see all these
attributes when you double-click on the 'SlideBox = SlideBox(Widget)' line in the attributes window - it then
displays all the attributes for this widget.

When you are editing a drawing using the Drawing Editor, everything is static. How can we tell if the data
associations are correct? This is where the 'sampleData' and the 'test' attributes come into action. If you set the
test attribute to be '1' (rather than the default '0'), it will test if the data-aware parts of your drawing work. It
connects to your data source, fetches the data and applies the first block of data to the drawing (i.e. in this case,
uses the first row in the table). If it fails, it gives you an error message in the Log window which should explain
what went wrong. So for example, if you have the dataSource name wrong (or have forgotten to set it up with
the OS), you would see something like this:

OperationalError: ('IM002', 0, '[Microsoft][ODBC Driver Manager] Data
source name not found and no default driver specified', 5896)

If everything works correctly, then the information from the first block of data is used, the main window will
change to reflect the new status of the SlideBox widget, and the data itself is appears in the 'sampleData'
attribute:

sampleData = [(1, 7, 'source: Guinness', 6)]

If you want to continue testing, you can use numbers higher than one for the test attribute, and the drawing will
fetch the corresponding data and use it in the same way (as long as you don't overshoot the end of the data in the
data source).

The last attribute to mention before we talk about running this script and creating the charts is 'verbose'. If
verbose is set to 0, then when you run it, the script is silent. It produces no text on your screen confirming what
it has done. If verbose is set to 1, then it produces a message telling you when it has written each file. (These
messages may be very useful in testing, but less so on a server - you can suppress them at will using this
attribute).

The last line of the code is the one that makes the drawing 'active'. DataAwareDrawing has a 'go' method - a
piece of code that connects to the specified data source, repeatedly fetches blocks of data, closes the connection,
and uses the data in the way you have specified. The Drawing Editor inserts a call to this into your new drawing,
so that when you run it from the command line or the desktop it will automatically do this. Guiedit
automatically does this if the class has a 'go' method to make it active - DataAwareDrawing has, but Drawing
doesn't. You should never have to insert this call by hand - but it's worth knowing about.

Diagra Documentation $Revision: 42327 $

Page 34

5.5 Running the resulting scripts

Once you have made any changes you want to the chart and then saved it to a file, you can then execute it. To
run the script that creates the charts from this base chart, you need to drop back into the Operating System. You
can use Windows Explorer (or the Finder if you are on a Mac) to find slidebox.py and double click on it.

You should see a window open and the following text appear in it:

generating PDF file './output/slidebox001.pdf'
generating EPS file './output/slidebox001.eps'
generating PDF file './output/slidebox002.pdf'
generating EPS file './output/slidebox002.eps'
generating PDF file './output/slidebox003.pdf'
generating EPS file './output/slidebox003.eps'

Running slidebox.py has created an both an EPS chart and a PDF chart for each chartID in our sample database.
If you inspect them, you will find that the data from the data source has been inserted into the relevant places in
the chart to produce the correct behaviour.

NB This method of running the file with a double-click is fine for Macintosh users, but may cause problems on
a Windows system. On a Mac, the dialogue box will stay on screen (with a title of 'terminated') once the
program has finished running. On a Windows system, the window appears, stays around for only as long as it
takes to run the program and then closes. If the program terminates due to an error, an error message is
displayed - but is not on screen long enough to be visible. This is why for Windows users, we strongly
recommend starting the program from an MS-DOS console (available from the start menu e.g.
Start->Programs->Accessories->Command Prompt). Once you have the console open, cd to the correct
directory and start the python script. For example:

C:\python22\rlextra\examples\graphics
python slidebox_db.py

This way, if an error occurs you will definitely see the error message, and are not in danger of having a directory
full of last month's charts.

Diagra Documentation $Revision: 42327 $

Page 35

5.6 Example 2: Dotbox.py

Example Chart

Large

Medium

Small

V
al

ue

B
le

nd

G
ro

w
th

Database Layout

Table: generic_dotbox

chartId dotx doty notes

1 1 1 Optional

2 2 2 Notes

3 2 1 Not Interesting

4 1 3 Ignore this... unless you want to.

5 0 0

6 3 3

Drawing Data Attributes

self.dataSource = ODBCDataSource()
self.dataSource.sql = 'SELECT chartId,dotx,doty FROM generic_dotbox'
self.dataSource.groupingColumn = 0
self.dataSource.associations.size = 3
self.dataSource.associations.element00 = DataAssociation(column=0, target='chartId',
 assocType='scalar')
self.dataSource.associations.element01 = DataAssociation(column=1, target='DotBox.dotXPosition',
 assocType='scalar')
self.dataSource.associations.element02 = DataAssociation(column=2, target='DotBox.dotYPosition',
 assocType='scalar')

Description

The data to be fetched from the dataSource in this case is also all scalars. So the single datum chartID is fetched
and used by DataAwareDrawing, dotx is retrieved from the dataSource and inserted into the attribute
dotXPosition in the widget DotBox, and doty is inserted into DotBox's dotYPosition attribute.

Two other things to notice are that the dataSource can have columns that are not referenced by any of the
DataAssociations. You can have data in the database that is used by other programs or departments which
doesn't affect the production of your charts in any way (such as the 'notes' column in this example).

Conversely, the widget that constructs the charts in your DataAwareDrawing can have attributes that are not
data-aware, and still have to be set manually using the Drawing Editor. In DotBox, the labels are held in the
xlabels and ylabels attributes. These are fixed and not set by the dataSource.

In this specific chart, the number of divisions inside the actual 'dot box' are set by the length of the list of labels.
Using

xlabels = ['Value', 'Blend', 'Growth']

produced a dotbox where there are three boxes along the x axis, but

xlabels = ['Value', 'Blend', 'Growth', 'Something else']

will produce one with four along this axis. If you set either of these attributes to 'None' you will get an error, so
if you want to remove the labels for one of these DotBoxes, you need to do something like:

xlabels = [None, None, None]

which removes the labels but keeps the rest of the structure.

Diagra Documentation $Revision: 42327 $

Page 36

Other things that we can mention about Dotbox include previews and borders.

■ Preview

This controls whether your EPS files have a (cross-platform) TIFF image embedded as a preview. The
default is 1 - they are on. If you need small file sizes set this to 0. If the number is greater than 1, the
previews are enlarged. This makes the file sizes a lot bigger. This has no effect on output formats other than
EPS.

■ showBorder

If you are only using PDF output, you can use the showBorder attribute. Set this to 1, and it will add a border
around the edge of your widget. For historical reasons, this doesn't work with EPS.

One way to add a border that works in both PDF and EPS is to add the following:
background = Rect(0,0,self.width, self.height, fillColor=None, strokeColor=black, strokeWidth=1)

Diagra Documentation $Revision: 42327 $

Page 37

5.7 Example 3: Horizontalbarchart.py

Example Chart

Cash 3.5% (5.3%)

Other 15.5% (3.3%)

Italy 6.0% (2.4%)

Switzerland 7.5% (4.5%)

Sweden 7.7% (6.3%)

Finland 7.7% (10.1%)

Netherlands 9.4% (14.2%)

Ireland 10.9% (12.5%)

France 14.9% (15.4%)

Germany 16.9% (26.2%)

Database Layout

Table: generic_bar

chartId rowId name value1 value2 value3

1 1 Widgets 17 25 32

1 2 Sprockets 19 28 35

1 3 Thingummies 13 20 30

2 1 Doodahs 20 29 21

2 2 Dohickies 11 12 11

2 3 Thingamajigs 32 17 12

2 4 Oojamaflips 14 15 21

3 1 Type1 12

3 2 Type2 6

3 3 Type3 2

3 4 Type4 20

3 5 TypeX 12

3 6 TypeXI 15

3 7 TypeXII 25

3 8 Unknown 8

Drawing Data Attributes

self.dataSource = ODBCDataSource()
self.dataSource.sql = 'SELECT chartId, name, value1, value2 FROM generic_bar'
self.dataSource.associations = Array(4, DataAssociation)
self.dataSource.groupingColumn = 0
self.dataSource.associations.element00 = DataAssociation(column=0,
 target='chartId',
 assocType='scalar')
self.dataSource.associations.element01 = DataAssociation(column=1,
 target='HorizontalBarChart.categoryNames',
 assocType='vector')
self.dataSource.associations.element02 = DataAssociation(column=[2],
 target='HorizontalBarChart.data',
 assocType='tmatrix')
self.dataSource.associations.element03 = DataAssociation(column=3,
 target='HorizontalBarChart.labelRow2',
 assocType='vector')

Diagra Documentation $Revision: 42327 $

Page 38

To Remove the Labels

HorizontalBarChart.labelRow2 = None
HorizontalBarChart.labelData = None
HorizontalBarChart.categoryNames = None

change element01 and element03 in the dataSource.associations so that the target=None:
element01 = DataAssociation(column=1, target='None', assocType='vector')
element03 = DataAssociation(column=3, target='None', assocType='vector')

Description

A number of new things are introduced in this chart. The first one is the groupingColumn. Since each chart of
this type uses data from more than one row in this table, our DataAwareDrawing needs to know which rows go
together. The groupingColumn attribute is what provides this information. In this case (and most cases), the
grouping column is '0' - the first one in the row (like many of the other attributes of our chart classes, counting
these starts at 0). So, all the rows which have a chartID of 1 go into the same chart (Widgets, Sprockets, and
Thingummies), all those whose chartID is 2 go into another and so on.

Unlike the previous two chart types, we have more than one assocType in this chart. We can now see both
'vector' and 'tmatrix' Data Associations in action.

vector

self.dataSource.associations.element01 takes a vector of column 1 and places this in the categoryNames
attribute of the HorizontalBarChart widget.

Since this vector is specified as a single number (rather than a list - it's not surrounded by square brackets), it
returns a column of data for that chart. So, for a chartId of '1', it returns:

['Widgets', 'Sprockets', 'Thingummies']

which become the categoryNames (the labels on the far left).

Shown as a diagram, this looks like this - the column outlined in red is the what is being placed into
categoryNames. Note that we are only showing the columns that the SQL retrieved from the database, not all
the columns that actually are in the database as above.

chartId name value1 value2

1 Widgets 17 25

1 Sprockets 19 28

1 Thingummies 13 20

self.dataSource.associations.element03 (the other vector) also does this, but for column 3 in the data rather than
for column 1).

tmatrix

self.dataSource.associations.element02 takes a tmatrix ('transform matrix') of column 2 and places it into the
'data' attribute of the widget HorizontalBarChart.

The column specified is a list with one item in it ('[2]'), so the tmatrix returns:

((17.0, 19.0, 13.0),)

This can be imagined as the Data Association taking this red column:

chartId name value1 value2

1 Widgets 17 25

1 Sprockets 19 28

1 Thingummies 13 20

and converting it into this before passing it on:

17 19 13

It is also possible to specify more than one column by using a list with more than one item in it. If we used
('[2,3]'), the tmatrix would return:

Diagra Documentation $Revision: 42327 $

Page 39

((17, 19, 13), (25, 28, 20))

This can be thought of as taking these columns:

chartId name value1 value2

1 Widgets 17 25

1 Sprockets 19 28

1 Thingummies 13 20

and converting them to:

17 19 13

25 28 20

Both vectors and tmatrices can be a lot more complex than this - see chapter 6 for more details on that.

Other things of note include:

■ Axes

Most charts will be implemented using axes - whether they are visible or not.

The chart HorizontalBarChart has two axes - the valueAxis (the one along the bottom), and the categoryAxis
(the one up the side). In this chart, they are both invisible. Both these axes have the following attributes:

visible
visibleAxis
visibleTicks

The visibleAxis attribute controls whether the actual axis is drawn - i.e. the main line that the ticks hang off.
The visibleTicks controls whether those ticks are displayed. The other attributes that control the ticks are
tickUp/tickDown in the valueAxis, and tickLeft/tickRight in the categoryAxis. Unlike the 'visible' attributes
we have just mentioned, these tick-related attributes are not Boolean. These 'tick' attributes take a number
which is the length of the tick. An easy mistake to make is to set visibleTicks to 1, but have both tickLeft and
tickRight set to 0. In this case, the ticks are displayed, but you can't see them due to them having a zero
length.

The visible attribute controls whether anything axis-related is drawn at all. This over-rides the other attributes
- you might have visibleAxis set to 1, but if visible is set to 0, then it won't be displayed.

(For more information about how to use Axes, look in section 5 of the ReportLab Graphics Guide, available
on our web site at http://www.reportlab.com/download.html)

■ reverseDirection

This attribute is under the categoryAxis (i.e. it's HorizontalBarChart.categoryAxis.reverseDirection). It is
available to all bar charts. As its name implies, if this is set to 1, it reverses the direction of the plot. The bars
and their barLabels are then drawn in the order opposite to the way they are laid out in the data (e.g. [1,2,3] is
reversed to [3,2,1]). This allows you to change if the bars are drawn from the bottom up or the top down
(inside a chart).

■ labelRow2

This is an attribute available only to this particular chart (i.e.
rlextra/examples/graphics/horizontalbarchart_db.py). What is does is allows you to have an optional second
row of labels appearing to the right of the main labels. If labelRow2 is None or an empty list then no these
labels do not appear.

labelRow2 uses the same format as the main labels (the attribute labelFormat). For information on using
format strings, look in section 4.5 (Formats and Formatters) in the chapter on 'Working with Charts'.

Like the other bar charts, the horizontalbarchart also has a number of attributes relating to the 'line'. The
attributes lineLength, lineStrokeWidth and lineColor all refer to it. This line is the thin, horizontal line which
goes from the tip of the actual bar to the labels on the right hand side. LineLength controls how long it is,
lineColor controls what colour it is and lineStrokeWidth controls its width.

Diagra Documentation $Revision: 42327 $

Page 40

5.8 Example 4: Verticalbarchart.py

Example Chart
24

.7
%

18
.2

%

23
.9

%

16
.1

%

13
.8

%

23
.8

%

15
.6

%

23
.8

%

14
.9

%

25
.1

%

1996 1997 1998 1999 2000

Fund

Index

Database Layout

Table: generic_bar

chartId rowId name value1 value2 value3

1 1 Widgets 17 25 32

1 2 Sprockets 19 28 35

1 3 Thingummies 13 20 30

2 1 Doodahs 20 29 21

2 2 Dohickies 11 12 11

2 3 Thingamajigs 32 17 12

2 4 Oojamaflips 14 15 21

3 1 Type1 12

3 2 Type2 6

3 3 Type3 2

3 4 Type4 20

3 5 TypeX 12

3 6 TypeXI 15

3 7 TypeXII 25

3 8 Unknown 8

Drawing Data Attributes

self.dataSource = ODBCDataSource()
self.dataSource.sql = 'SELECT chartId, name, value1, value2 FROM generic_bar'
self.dataSource.groupingColumn = 0
self.dataSource.associations = Array(3, DataAssociation)
self.dataSource.associations.element00 = DataAssociation(column=0,
 target='chartId',
 assocType='scalar')
self.dataSource.associations.element01 = DataAssociation(column=[2,3],
 target='VerticalBarChart.data',
 assocType='tmatrix')
self.dataSource.associations.element02 = DataAssociation(column=1,
 target='VerticalBarChart.categoryAxis.categoryNames',
 assocType='vector')

Diagra Documentation $Revision: 42327 $

Page 41

To Remove the Labels

VerticalBarChart.categoryAxis.categoryNames = None
VerticalBarChart.barLabelFormat = None

to remove the labels in the legend - change this line (in VerticalBarChart.legend):
colorNamePairs = [(PCMYKColor(100,65,0,30,spotName='PANTONE 288 CV'), 'Fund'),
 (PCMYKColor(11,11,72,0,spotName='PANTONE 458 CV'), 'Index')]
to:
colorNamePairs = [(PCMYKColor(100,65,0,30,spotName='PANTONE 288 CV'), None),
 (PCMYKColor(11,11,72,0,spotName='PANTONE 458 CV'), None)]
(i.e. change the strings inside the single quotes into 'None'(No quotes))

change element02 in the dataSource.associations so that the target=None:
element02 = DataAssociation(column=1, target=None, assocType='vector')

Description

Like the other bar charts, VerticalBarChart has a reverseDirection attribute. In this case it is under
self.VerticalBarChart.categoryAxis.reverseDirection.

Under VerticalBarChart.barLabels are a number of attributes to do with the labels at the tops of the bars (the
ones that the 'lines' lead to). VerticalBarChart.barLabels.angle is the angle that these labels are printed at - in
this case 90o. The dx and dy attributes refer to the horizontal and vertical shifts that are applied to these labels
away from the bars they refer to. A negative number moves it down/to the left of its bar, and a positive number
moves it up/to the right. (For more details on these, refer to section 5.3 ('Labels') of the Graphics Guide and
consult any autogenerated reference that you have).

While we are discussing barcharts, this is the place to mention three attributes of the valueAxis:

■ valueMin

■ valueMax

■ forceZero

valueMin and ValueMax

If you know that your data will always be in a certain range, you can use valueMin and valueMax. ValueMin
sets as an absolute the lowest value that will appear on the chart, and this always appears at the bottom of the
chart. ValueMax does the same thing at the top of the chart (Of course, if you are using a horizontal barchart
then top and bottom become left and right). If you don't absolutely know the boundaries of your data, then it is
best to avoid using these. If you use them anyway, you may well find yourself in a situation where the bars flow
outside the chart and its axes.

Given the above warning, valueMin and valueMax can be used to fix the position of an axis. If the values to be
used are a mixture of positive and negative numbers, and you have not set the valueMin and valueMax, the axis
will 'float' up and down - i.e. it will appear in different places in different charts, as dictated by the data. Setting
these attributes can avoid this.

As an example, for the above chart if you decided to set the valueMin and valueMax to 40, you would see the
following lines appear in the source window:

self.VerticalBarChart.valueAxis.valueMax = 40
self.VerticalBarChart.valueAxis.valueMin = 40

forceZero

When the valueMin and valueMax haven't been set, the chart will set its own lower and upper limits. For
example, if your data ranges from 50 to 100, the lower limit the chart chooses will be around 50. This can be
misleading. ForceZero forces the lower limit to be 0, so the heights of the bars and the scaling are in a more
straightforward proportion to each other. If you start getting unusual behaviour in your charts, try setting
forceZero to 1 and seeing what effect this has.

ForceZero takes a boolean argument - 1 sets it to 'on' and forces zero to appear on the value axis, 0, sets it to 'off'
and allows the chart to omit zero. You can right click on the forceZero attribute in the attributes window of the
Drawing Editor to set this.

As an example, if you decided to use forceZero for the above chart you would see this appear in the source
window:

Diagra Documentation $Revision: 42327 $

Page 42

self.VerticalBarChart.valueAxis.forceZero = 1

These two examples both have the same data set, but the one on the left has forceZero off, and the one on the
right has it on. Other than this forceZero attribute, these are the same chart.

50

60

70

80

90

0

20

40

60

80

forceZero=0 forceZero=1

Diagra Documentation $Revision: 42327 $

Page 43

5.9 Example 5: Linechart.py

Example Chart

Line chart example would go here

Database Layout

Table: generic_time_series

chartId date value1 value3 value2

119 02/12/1997 1.00 1.00

119 31/12/1997 1.00 1.00

119 31/01/1998 1.00 1.01

119 28/02/1998 1.02 1.02

119 31/03/1998 1.01 1.01

119 30/04/1998 1.03 1.02

119 31/05/1998 1.03 1.02

119 30/06/1998 1.03 1.03

119 31/07/1998 1.03 1.03

119 31/08/1998 1.02 1.05

119 30/09/1998 1.05 1.09

. . .

666 31/07/1992 1.03 1.13

666 31/08/1992 1.04 1.14

666 30/09/1992 1.04 1.14

666 31/10/1992 0.99 1.19

666 30/11/1992 1.05 1.25

666 31/12/1992 1.06 1.16

chartId date value1 value3 value2

Drawing Data Attributes

self.dataSource = ODBCDataSource()
self.dataSource.sql = 'SELECT chartId, date, value1*100, value2*100, value3*100 FROM generic_time_series'
self.dataSource.associations = Array(2, DataAssociation)
self.dataSource.associations.element00 = DataAssociation(column=0,
 target='chartId',
 assocType='scalar')
self.dataSource.associations.element01 = DataAssociation(column=[[1, 2], [1,3], [1,4]],
 target='chart.data',
 assocType='tmatrix')

Description

As standard in this chart class, there is the facility to take up to three lines from the data and plot them. If the
column in the data is empty, it is ignored. To see an example of this, type in 'test=3' into the entry field - the
chart graphic in the main the Drawing Editor window will change to one that uses the three columns of data
from the table generic_time_series in sampledata.mdb

If you look under dataSource.associations, you will see the following line:

element01 = DataAssociation(column=[[1, 2], [1, 3], [1, 4]],
 target='chart.data',
 assocType='tmatrix')

In the chart data, the date (column 1 - the second column in the database) is used to provide the x-coordinate in
sets of x-y pairs, which are then plotted as a line. Here is an example of what the data looks like when it is

Diagra Documentation $Revision: 42327 $

Page 44

inserted into chart.data - this is from test three again:

(
 ((19971202, 100.0), (19971231, 100.3), ... (20000630, 114.6), (20000731, 113.6)),
 ((19971202, 100.0), (19971231, 101.0), ... (20000630, 133.58), (20000731, 132.60)),
 ((19971202, 100.0), (19971231, 107.0), ... (20000630, 123.58), (20000731, 122.60))
)

Sections omitted for brevity - indicated by '...'

Adding more lines

If three lines are not enough, you can add extra lines to this chart. To add them, first change the SQL under
self.dataSource from:

sql = 'SELECT chartId, date, value1*100, value2*100, value3*100
 FROM generic_time_series'

to

sql = 'SELECT chartId, date, value1*100, value2*100, value3*100, value4*100
 FROM generic_time_series'

adding as many extra as you need. Then change the element under dataSource.associations from :

element01 = DataAssociation(column=[[1, 2], [1, 3], [1, 4]],
 target='chart.data',
 assocType='tmatrix')

to

element01 = DataAssociation(column=[[1, 2], [1, 3], [1, 4], [1,5]],
 target='chart.data',
 assocType='tmatrix')

Make sure you have enough columns in your database, otherwise you will get an error message when you try to
test or run it:

Traceback (most recent call last):
File "c:\Python22\rlextra\graphics\guiedit\datacharts.py", line 572, in testConnect
 self.applyDataSet(sample)
File "c:\Python22\rlextra\graphics\guiedit\datacharts.py", line 646, in applyDataSet
 y = row[c]
dexError: tuple index out of range

Removing lines

The first and most obvious approach is to remove them from the database. If a column in the database is empty,
the chart will ignore it.

A second way to change the data association so that the data isn't being used. E.g., to plot only one line, no
matter what else is in the database, change:

element01 = DataAssociation(column=[[1, 2], [1, 3], [1, 4], [1,5]],
 target='chart.data',
 assocType='tmatrix')

to

element01 = DataAssociation(column=[[1, 2]], target='chart.data', assocType='tmatrix')

yet another way of doing it is to change the SQL. For example, change:

sql = 'SELECT chartId, date, value1*100, value2*100, value3*100 FROM generic_time_series'

to

sql = 'SELECT chartId, date, value1*100, null, value3*100 FROM generic_time_series'

The null in the SQL acts as a placeholder - it sits in your SELECT statement but is ignored.

Changing the colour of the lines (and other line attributes)

All the attributes to do with the lines in this chart are found under chart.lines. This is a collection of attributes -
see section 4.4 Working with Collections for more general info about Collections.

If a line begins with the actual attribute name, then it applies to all the lines in the chart. So

strokeWidth = 1

Diagra Documentation $Revision: 42327 $

Page 45

sets the width of every line (or at least every line that is plotting data) to 1 point. If a line starts with a number
inside square brackets, then it only applies to that one line. So

[1].strokeColor = ChbkYellow

changes the colour of the second line to the colour we have previously defined as ChbkYellow (since we count
from 0). This happens to be the chartbook yellow we have imported from the file xxxcolors.py, but it could be
any color that reportlab.graphics recognises.

If you set colours for a number of lines, and the actual number of lines on the chart is greater than that, the
colours will 'rollover'. If you set chart.lines.[0]strokeColor to red and chart.lines.[1]strokeColor to blue, then
proceed to actually have four lines plotted on your chart, then the first line will be red, the second blue, the third
red again, and the fourth blue again.

One attribute that is a slightly harder to explain is the strokeDashArray. If you want to have a dotted or dashed
line on your chart, you do this using the strokeDashArray. You give this an argument of a list of numbers (e.g.
'[5,2]' or '[4,2,8,2]'). The first number is the number of points that that dash will be on for, the second is the
number of points it will be off for. More complex patterns of numbers will produce more complex sequences of
dots dashes.

The attributes under chart.lines are:

strokeDashArray
strokeWidth
strokeColor

Other attributes

■ reversePlotOrder

This controls the order in which lines are plotted over each other. If the line which is most important in the
data is appearing underneath all the others change this from 0 to 1 (or vice versa). This appears under the
attributes for the chart.

The following attributes are found under chart.yValueAxis:

■ requiredRange

The requiredRange is the least range that should be displayed. For example, if you have data which ranges
from -1.2 to 0.75, if the chart is left to set its own limits these will look like very big swings. Giving a
required range of 30 would (in this case) give you a range of -15 to +15 and put the numbers into perspective.
The default value for requiredRange for this chart is 30.

■ leftAxisPercent

leftAxisPercent controls whether or not a percentage sign ('%') is added to the end of labels. It can be set to 0
or 1.

■ leftAxisOrigShiftIPC and leftAxisOrigShiftMin

These both refer to the lowest tick on the left axis of the chart. If it is 100 (or whatever your baseline is), it
can require a 'shift' so that it doesn't appear on the bottom line of the grid. If you want this shift to take place,
you need to set one of these attributes. Both perform the shift, but they differ on how it is specified.
leftAxisOrigShiftIPC specifies it as a ration (IPC = 'In Per Cent'), and leftAxisOrigShiftMin specifies it an as
amount.

■ SkipLL0

In some situations, you don't want the first tick label on the axis to appear. Setting SkipLL0 to 1 is used to
skip this first tick label.

Diagra Documentation $Revision: 42327 $

Page 46

5.10 Example 6: SectorCylinderChart

Example Chart

£3389

£19444

£8744
£11200

£3389

£19444

£8744

£11200

1 year 3 year 5 year 10 year
0

10000

20000

30000

Savings Split

Description

This example is mainly here to show you how to use a couple of attributes that haven't been mentioned so far.

All barcharts have the attribute of Symbol. This is used where you want a bar to be represented by a graphic
rather than the default rectangle that bars use. You can use:

Symbol = ShadedRect(Widget)

This then allows you access to the attributes under Symbol and so allows you to use various shading effects.
Initially, you can set the start and end colours, which does pretty much as you would expect - the shading starts
with the start colour, shades through the number of gradations set in the numShades attribute and then finishes
with the end colour.

You can then go on to set the cylinderMode attribute. Set to 0, this gives you a simple shade (as we've just
described). Set it to 1, and it shades from the start colour to the end colour and then back to the start colour
again, giving the illusion of a cylinder.

You can set the orientation of the shading using the attribute of the same name. This can be set to 'horizontal' or
'vertical'. Horizontal has the gradation going from top to bottom, vertical has it going from side to side.

Another attribute you can set is style (under chart.categoryAxis). If you set this to 'parallel', having more than
one series in the chart data produces bars which are side by side (as we saw in the verticalbarchart.py in
example 5). If you set this to 'stacked', the behaviour is different. Multiple series in the data lead to having bars
which are stacked on top of each other (or different coloured divisions of a single bar, if that's the way you see
it).

Putting all these attributes together allows you to create a chart like the example above.

Diagra Documentation $Revision: 42327 $

Page 47

 6 More about Using Axes
This section provides a pseudo-code description of the order in which various attributes are used in the most
commonly used axis - 'ValueAxis'. This can be useful when trying to debug a new chart class or when figuring
out how one works.

It also gives brief descriptions of some attributes which only appear in these axes (such as leftAxisOrigShiftIPC,
and leftAxisSkipLL0).

Don't feel that you have to understand everything in this section. Feel free to skip it. The best way to understand
how these work is by using them, or by experimenting with them in the Drawing Editor. This is more for use
when you can't figure out why something is going wrong, rather than just figuring out how it works at all.

6.1 ValueAxis
ValueAxis:
setPosition (called by the containing chart)
 set the _x, _y & _length attributes passed from
 above
configure(data) (called by the containing chart)
 _setRange
 compute _valueMin and _valueMax
 either from valueMin, valueMax or directly from the data.
 if _valueMin == _valueMax:
 force in a fake range of unit length.
 if forceZero:
 ensure _valueMin <= 0 <= _valueMax
 _rangeAdjust:
 do nothing method to allow hooking at this point
 _calcScaleFactor
 _scaleFactor=(_valueMax-_valueMin)/_length
 _calcTickmarkPositions
 if self.valueSteps is set:
 _tickValues = valueSteps
 else
 _calcValueStep
 if valueStep is set
 _valueStep = valueStep
 else
 rawRange = _ValueMax-_valueMin
 n = min(maximumTicks-1, _length/minimumTickSpacing
 rawInterval = rawRange/n
 _valueStep = nextRoundNumber(rawInterval)
 ticks = []
 t = int(_valueMin/_valueStep)*_valueStep
 if t>=_ValueMin: append tick to ticks
 t += _valueStep
 while t<=_valuemax:
 append t to ticks
 t += _valueStep
 _tickValues = ticks
 _adjustAxisTicks
 in the base class this is a null hook method
 client classes can override to adjust the tick mark
 positions
 _configured = 1

draw
 if visible
 makeAxis
 if visibleAxis
 determine join from joinAxisMode, joinAxisPos and joinAxis
 draw the axis line

 makeTicks
 if visibleTicks
 for tick in _tickValues:
 v = scaled tick
 draw tick line using up/down and the scaled value

 makeTickLabels
 for tick _tickValues
 v = scaled tick
 if labelTextFormat is a string use as a format
 txt = labelTextFormat % tick

Diagra Documentation $Revision: 42327 $

Page 48

 elif labelTextFormat is a list
 txt = labelTextFormat[i] (i = tick sequence num)
 elif labelTextFormat is callable
 txt = labelTextFormat(tick)
 else arise value error
 draw the label using the scaled value v
 and using the labels[i] styles

NB: in the above if _valueMin and _valueMax are calculated from the data nothing forces them to be nice
numbers so that then the axis may not start or end on tick values.

Diagra Documentation $Revision: 42327 $

Page 49

 7 More on Data Sources
7.1 Making a Simple Chart Data Aware

As an example, we are going to create a simple bar chart and make it pull data from the example Access
Database (unpack sampledata.mdb from the file rlextra/examples/graphics/sampledata.zip). We'll assume you
have set up the ODBC connection and that the name is 'samplechartdata'.

Start the Drawing Editor, and select 'New' from the File menu. When the 'New Project parameters' dialog box
appears, select 'DataAwareDrawing', give it a name ('SampleDataChart'), and click on OK. Select 'Add New
Widget', click on 'HorizontalBarChart', give it a name ('chart') and click on OK.

Click on chart = HorizontalBarChart(BarChart), and change the x to be 75 and y to be 30 so it's
a bit further from the edge.

Select 'Add New Widget' again, type in "String(125, 124, 'I am a string')" (since String has to be given its x and
y coordinates and some text), give it a name ('title') and click on OK.

So far we have just set up a basic static bar chart. The rest of this example will be concerned with making it data
aware.

Find the line that says

dataSource = DataSource(Widget)

Click on it, and change it so that it reads

dataSource = ODBCDataSource()

In the attributes window it will change so that it now reads

Diagra Documentation $Revision: 42327 $

Page 50

dataSource = ODBCDataSource(DataSource)

Double click on the data source line, and the attributes window will change to show you the dataSource
attributes. Normally, you would have to change the 'name' line to point to the correct ODBC data source, but in
this example file the default name is the correct one.

If you were using a stored procedure, you would also have to set the 'password' and 'user' attributes while you
were here as well.

Change the sql line to read

sql = 'SELECT chartId, rowId, name, value1, value2, value3 FROM
generic_bar'

This line tells the chart where to get the data from. In this case it is selecting the columns called chartId, rowId
(and so on) from the table called generic_bar in our Access database. We can get these names by looking at the
table in the database and choosing which columns we need to use.

The groupingColumn is the column that we will use to decide which data will be in a chart. It might typically a
fund name or ID, but could be anything. What matters is that it is the same for each element that will go in a
single chart, but will not be repeated in other charts.

We do not have to change this, since it will remain as 0. When counting the columns, we start counting at 0 (as
programmers do). Therefore, column 0 is the first one we retrieve in the SQL - chartId.

For this to actually allow us to do anything useful, we must associate it with the chartId of the chart. And to do
this, you must change the number of Data Associations to something greater than 0.

Double-click on the line that says

associations = Array(0, DataAssociation)

you should now see a line that says

size = 0

Change this 0 to a number 4, and you will see a number of new lines appear, each one looking something like
this:

element00 = DataAssociation(column=0, target=None,
assocType='vector')

Now we can make our first attribute data aware. Click on the first line 'element' line, and change it to read

element00 = DataAssociation(column=0, target='chartId',
assocType='scalar')

You can either change it in the text edit box below the attributes window, or you can double click on it and
change each element separately.

The column number is the number of the column in the SQL statement that we set earlier. As already
mentioned, 0 is the first column in the list in the SQL statement - chartId. Target is where that item of data is
going to be 'plugged-into' in our chart. In this case, it's at the top level, so we can just type in 'chartId' without
having to say which part of the chart it refers to.

This line should now read:

element00 = DataAssociation(column=0, target='chartId',
assocType='scalar')

If you go back to the top level of the chart, you can type 'test=1' into the entry field and hit enter. The chartId
will change to 1. Nothing on the chart itself will change yet, since we haven't plumbed any of it in yet, but it's

Diagra Documentation $Revision: 42327 $

Page 51

enough to show you that the chart is pulling data from the database.

Now we can make the title data aware. Normally, you would have a separate field for the title, but in this
example we are just going to use the name of the first column. To do this, double click on DataSource, then on
associations to get you back into the attribute for self.dataSource.associations. Click on element01, and edit it
so it reads

element01 = DataAssociation(column=2, target='title.text',
assocType='scalar')

The pulls the data from column 2 (the third column) in the SQL statement and fits it in as a single item into the
attribute text of title (the String we added earlier).

Sometimes the best way of finding out what kind of data association is required for a chart is to look at the
sample data it uses as a default, and see which kind of data association produces that kind of output. Then you
can figure out which columns (or rows) from the database you need to specify.

We have seen scalars in use - here is a quick run down of the other data associations:

scalar

We have already seen what a scalar is - it's basically just a single variable. You can think of it as a 1x1 matrix if
you want, but basically it's just a single box which is pulled from the database and fitted into a single slot in the
chart.

Examples of something we can use a scalar for:
text = 'Widgets'
x = 125

Typical use for a scalar:
String.text, Label.text, chartId

vector

Vectors are useful when you need to pull a column of data from a database, and use all of it (or at least all that is
in that set, as defined by the groupingColumn).

If you give a single number for the column, then one column will be returned as a list (it will be surrounded by
brackets). So, for something like this:

DataAssociation(column=1, target='HorizontalBarChart.categoryNames',
 assocType='vector')

you might get something back looking like this:

['Widgets', 'Sprockets', 'Thingummies']

Examples of something we can use a vector with a single number for:
categoryNames = ('Cash', 'Other', 'Italy', 'Switzerland')
labelRow2 = [5.3, 3.3, 2.4, 4.5]

If you give a more than one number for the column, they must be separated by a comma and enclosed in square
brackets. Then the data association will return a list (enclosed by square brackets) containing tuples of the
columns (enclosed by parentheses).

For something like this:

DataAssociation(column=[1, 2], target='data', assocType='vector')

you might get something back looking like this:

[('a01', 'a02'), ('a11', 'a12'), ('a21', 'a12'), ('a11', 'a12')]

Examples of something we can use a vector with a numbers in square brackets for:
data = [('a01', 'a02'), ('a11', 'a12'), ('a21', 'a12'), ('a11', 'a12')]

Typical use for a vector:
chart categoryNames, horizontal barchart data, pie chart data and legend names

matrix

Matrices aren't very often used. More often you will be using a tmatrix (see below).

For a description of a matrix, look in section 7.3 (Data Association Types)

Diagra Documentation $Revision: 42327 $

Page 52

tmatrix

A tmatrix is a 'transformed matrix'. It is used to convert a vertical column (or columns) into a horizontal list.

The most common use is where the column is given as a single number inside square brackets (a list), the
tmatrix returns a tuple inside another tuple (parentheses inside other parentheses). So for something like this:

column=[13], target='data', assocType='tmatrix'

You might get back something looking like this:

((0.6, -1.3, -0.7, -0.4),)

Examples of something we can use a tmatrix with a single number for (as seen in the default data):
data = ((0.0, -0.10, 0.0, 0.3, 0.3),)
data = [(3.5, 15.5, 6.0, 7.5)]

For charts where you need two data sets (e.g., where you are plotting one set of bars against another), the
column specification would be two numbers inside the square brackets:

column=[8, 7], target='data', assocType='tmatrix'

would give you something like:

data = ((-10.9, -7.1, 2.9), (9.6, 13.2, 29.5, -6.2))

Typical use for a tmatrix:
chart.data (for various barcharts)

rowmap

Rowmap is seldom used. It used for picking out individual cells in a row and stringing them together, rather
than selecting a whole column.

Typical use for a rowmap:
chart.data

If you need more information and examples on any one of these data associations, read section 7.3.

The sample data in our example barchart looks like this:

data = [(100, 110, 120, 130), (70, 80, 85, 90)]

So, it is a possibility that it is either a vector or a tmatrix. Since tmatrices are used for the chart data for
barcharts, we can use one of them.

Looking at the SQL statement will tell us what we need to plot and what positions it is in.

sql = 'SELECT chartId, rowId, name, value1, value2, value3 FROM
generic_bar'

We can see that we have value1, value2 and value3 to plot on this chart, in positions 3, 4 and 5.

So we need to change a data association to read

element02 = DataAssociation(column=[3,4,5], target='chart.data',
 assocType='tmatrix')

The last thing we will do is to will do is set up a data association for the bar category names (the names at the
left of each group of bars).

The names appear the third column of the data, so (since we count from 0) this becomes a column specification
of 2:

element03 = DataAssociation(column=2,
 target='chart.categoryAxis.categoryNames',
 assocType='vector')

Going to the top level and doing test=1 (or 2 or 3) shows us that the it works and is pulling data for the chart, the
title and the category labels from the database.

This example is saved as the file rlextra/examples/graphics/sampleDataBarChart.py if you
wish to play with it further.

Diagra Documentation $Revision: 42327 $

Page 53

There are a number of other things you can do to make it better - making it verbose so you can see it saving the
files when you run it from the command line, changing the fileNamePattern, changing the bar colours so they
look better and so on. However, it is data aware and works, so anything else doesn't really belong in this section.

7.2 Changing the Data Associations on an Existing Chart

There may be a number of ways you need to change the data associations on an existing chart. You may need
to:

■ Add a new column and data association,

■ Remove an existing column and data association

■ Change an existing column and data association in place

■ Change the input to a stored procedure

Adding a new column and data Association

If someone has added an extra column to the database (or altered the stored procedure to return an extra
column), and you need to make us of it, you need to do the following.

■ Edit the SQL to add in the new item,

■ Add a new Data Association,

■ Change the new Data Association to retrieve the correct data and target it to the correct chart attribute

Removing an existing column and data association

If you no longer need to use something stored in the database (or being returned by a stored procedure), you
need to

■ Edit the SQL to remove the item you no longer require,

■ Change the Data Association

■ Either make sure the target has something sensible in it or remove it altogether

To edit the SQL, double-click on the line 'dataSource = ODBCDataSource(DataSource)' in the
attributes window, then double-click on the line that begins with 'sql = '. You can then remove the name of
the item you no longer need. This will no longer be retrieved from the data base.

To edit the data associations, find the line in the source window that refers to the item you want to remove, right
click on it and click on the button labelled 'Remove'. This data association then disappears completely. You will
notice that in the attributes window, it changes to something like this:

element04 = DataAssociation(column=0, target=None, assocType='vector')

If no other data associations below it are actually being used, you can change the size attribute to remove them
as well.

To do this, go back to the top level (so the header of the Attributes window says 'self.Attr'), then double-click on
the line that says something like 'associations = Array(3, DataAssociation)' , click on the line
that says 'size =' and edit the number.

A simpler, 'quick and dirty' way of doing this is to edit the Data Association so that the target reads 'None'. The
data is still retrieved from the database, but is not used. This is only suitable if you don't want something to
appear in your chart any longer but the structure of the data in the database will not change.

If you are removing the data association because you want that element to be static (for example, a title which
will now be the same on every chart rather than being data aware), you should edit it in the attributes window so
that it contains what you want. If you want to remove it completely, find any lines referring to it in the source
window, right click on them and click on the 'Remove' button. Once all the lines that refer to it have been
removed, you can remove the line that added it to your chart in the first place (the one that begins with
'self._add(self, ' and then the name of that element and its attributes).

Diagra Documentation $Revision: 42327 $

Page 54

Changing an existing column and data association in place

Usually this will consist of either adding or removing data associations. If you use the column names (rather
than a '*') in the SQL, changing the order of the columns in the database should not break anything.

Diagra Documentation $Revision: 42327 $

Page 55

7.3 Data Association Types

This section gives a more formalized explanation of how Data Associations work, with more varied examples.
We covered how most of them work in the various worked examples and the previous section. You can skip this
section unless you need it.

Assume we have a bunch of columns:

1 a01 a02 a03 a04

1 a11 a12 a13 a14

1 a21 a12 a13 a24

1 a11 a12 a13 a34

2 b01 b02 b03 b04

2 b11 b12 b13 b14

2 b21 b12 b13 b24

2 b11 b12 b13 b34

3 c01 c02 c03 c04

3 c11 c12 c13 c14

3 c21 c12 c13 c24

3 c11 c12 c13 c34

3 c11 c12 c13 c34

scalar:

the column specification must be a scalar. The associated target is set to the value of that column in the first row
of the data block. Typically the chartId is a scalar, it normally has a data association like

DataAssociation(column=0, target='chartId', assocType='scalar')

Assuming that the grouping column is the default=1 then the row grouping will mean that chartId will receive
the values i1, i2 and i2 with each data block. Note that although we see more than one value in column 0
corresponding to the rows i1 only the first of such rows is used for a scalar. So another scalar defined by

DataAssociation(column=1, target='bongo', assocType='scalar')

would mean that self.bongo received the values a01, b01 and c01.

vector:

the column specification can be a scalar or a sequence. With a scalar the target receives a row vector
corresponding to the selected column i.e. all the rows in the group. When a list is used the elements of the
output vector become lists themselves.

SELECT Id, C1, C2 FROM example
column=0, target='chartId', assocType='scalar'
column=1, target='data', assocType='vector'
chartId:1
 data:['a01', 'a11', 'a21', 'a11']

chartId:2
 data:['b01', 'b11', 'b21', 'b11']

chartId:3
 data:['c01', 'c11', 'c21', 'c11']

SELECT Id, C1, C2 FROM example
column=0, target='chartId', assocType='scalar'
column=[1, 2], target='data', assocType='vector'
chartId:1
 data:[('a01', 'a02'), ('a11', 'a12'), ('a21', 'a12'), ('a11', 'a12')]

chartId:2
 data:[('b01', 'b02'), ('b11', 'b12'), ('b21', 'b12'), ('b11', 'b12')]

chartId:3

Diagra Documentation $Revision: 42327 $

Page 56

 data:[('c01', 'c02'), ('c11', 'c12'), ('c21', 'c12'), ('c11', 'c12')]

matrix:

the column specification can be a scalar, a list or a list of lists. A scalar is treated as a single element list.

as an example:

SELECT Id, C1, C2, C3 FROM example
column=0, target='chartId', assocType='scalar'
column=1, target='cat', assocType='matrix'
column=[2, 3], target='dog', assocType='matrix'
column=[[1, 2], [2, 3]], target='data', assocType='matrix'
chartId:1
cat:(('a01',), ('a11',), ('a21',), ('a11',))
dog:(('a02', 'a03'), ('a12', 'a13'), ('a12', 'a13'), ('a12', 'a13'))
data:((('a01', 'a02'), ('a02', 'a03')),
 (('a11', 'a12'), ('a12', 'a13')),
 (('a21', 'a12'), ('a12', 'a13')),
 (('a11', 'a12'), ('a12', 'a13')))

chartId:2
cat:(('b01',), ('b11',), ('b21',), ('b11',))
dog:(('b02', 'b03'), ('b12', 'b13'), ('b12', 'b13'), ('b12', 'b13'))
data:((('b01', 'b02'), ('b02', 'b03')),
 (('b11', 'b12'), ('b12', 'b13')),
 (('b21', 'b12'), ('b12', 'b13')),
 (('b11', 'b12'), ('b12', 'b13')))

chartId:3
cat:(('c01',), ('c11',), ('c21',), ('c11',))
dog:(('c02', 'c03'), ('c12', 'c13'), ('c12', 'c13'), ('c12', 'c13'))
data:((('c01', 'c02'), ('c02', 'c03')),
 (('c11', 'c12'), ('c12', 'c13')),
 (('c21', 'c12'), ('c12', 'c13')),
 (('c11', 'c12'), ('c12', 'c13')))

tmatrix:

the column specification can be a scalar, a list or a list of lists. A scalar is treated as a single element list.

When the column spec is a simple list as in HorizontalBarChart we get

SELECT Id, C1, C2, C3, C4 FROM example
column=0, target='chartId', assocType='scalar'
column=1, target='cat', assocType='vector'
column=[2], target='data', assocType='tmatrix'
column=4, target='label', assocType='vector'
chartId:1
 cat:['a01', 'a11', 'a21', 'a11']
 data:(('a02', 'a12', 'a12', 'a12'),)
 label:['a04', 'a14', 'a24', 'a34']

chartId:2
 cat:['b01', 'b11', 'b21', 'b11']
 data:(('b02', 'b12', 'b12', 'b12'),)
 label:['b04', 'b14', 'b24', 'b34']

chartId:3
 cat:['c01', 'c11', 'c21', 'c11']
 data:(('c02', 'c12', 'c12', 'c12'),)
 label:['c04', 'c14', 'c24', 'c34']

As an example consider treating the above data as a time series with dates in column 1 i.e. a01 is a date. The
data are in columns 2, 3, 4 so we use pairs [1,2], [1,3] and [1,4], this is used in linechart.py. For a single chart
we should have a list of lists of pairs.

SELECT Id, C1, C2, C3, C4 FROM example
column=0, target='chartId', assocType='scalar'
column=[[1, 2], [1, 3], [1, 4]], target='data', assocType='tmatrix'
chartId:1
data:
 (((a01, a02), (a11, a12), (a21, a12), (a11, a12)),
 ((a01, a03), (a11, a13), (a21, a13), (a11, a13)),
 ((a01, a04), (a11, a14), (a21, a24), (a11, a34)))

chartId:2
data:

Diagra Documentation $Revision: 42327 $

Page 57

 (((b01, b02), (b11, b12), (b21, b12), (b11, b12)),
 ((b01, b03), (b11, b13), (b21, b13), (b11, b13)),
 ((b01, b04), (b11, b14), (b21, b24), (b11, b34)))

chartId:3
data:
 (((c01, c02), (c11, c12), (c21, c12), (c11, c12)),
 ((c01, c03), (c11, c13), (c21, c13), (c11, c13)),
 ((c01, c04), (c11, c14), (c21, c24), (c11, c34)))

rowmap:

the column specification can be a list or a list of lists.

Rowmaps are used to pick individual elements out of a row of data and convert them into a list or list of lists.

SELECT Id, C1, C2, C3, C4 FROM example
column=0, target='chartId', assocType='scalar'
column=[1, 2, 3, 4], target='cat', assocType='rowmap'
column=[1, 3], target='dog', assocType='rowmap'
column=[[2, 3], [1, 4]], target='data', assocType='rowmap'
chartId:1
cat:['a01', 'a02', 'a03', 'a04']
dog:['a01', 'a03']
data:[['a02', 'a03'], ['a01', 'a04']]

chartId:2
cat:['b01', 'b02', 'b03', 'b04']
dog:['b01', 'b03']
data:[['b02', 'b03'], ['b01', 'b04']]

chartId:3
cat:['c01', 'c02', 'c03', 'c04']
dog:['c01', 'c03']
data:[['c02', 'c03'], ['c01', 'c04']]

The following is an example of one in use, this is from the QRI chart drawing2_returns.py:

dataSource.associations.element01.assocType='rowmap'
dataSource.associations.element01.column = [4,7,10,13,16]
dataSource.associations.element01.target = 'chart.categoryAxis.categoryNames'

Diagra Documentation $Revision: 42327 $

Page 58

 8 New Drawing Editor Features
8.1 Test Mode

This isn't actually a new feature, but it has been expanded slightly. It is also mentioned here since it works well
with the new diagnostic features mentioned below. Setting the chart attribute 'test' to 1 will fetch the first set of
data from the database in a data aware chart. Setting it to 2 will fetch the second, and so on. This is very useful
when making sure that charts actually work.

One new feature of the test mode is that any 'test' attributes which are set can be automatically stripped out of
the chart code. If you have a number of tests set saved in the code it can both bloat the size of the code, and fix
the results of the chart rather than having them be dynamic. For example, if test was set to three then all charts
produced with that chart class would always be from the third set of data pulled from the database.

To turn this on or off, select 'Filter test attr' from the Options menu.

8.2 Errors

If you have the 'log' window minimized to conserve space, even having error messages appearing in red text
won't draw them to your attention. The Drawing Editor now pops-up a requester telling you both that you have
had an error and what it is. If you want more details on it, you can then look in the log window.

When one of these pops-up, the Drawing Editor will also beep to get your attention. If you are finding this
annoying, you can toggle it off or on using the 'Error bells' item in the Options menu.

8.3 Diagnostics

Two new diagnostic features have been added to Guiedit: Debug_memo and a diagnostic chart.

Debug_Memo

If a data aware chart is crashing midway through a chart run, we need a way of gathering as much information
as possible about the cause. Debug_memo is a way of doing this.

To switch on DebugMemo, edit the line in the chart class (from the source window, by right clicking on it and
changing it in the Alter Edit dialog box) that has the 'go' method. This will be the last line in the file (or near it),
and will look something like this:

SampleDataChart().go()

Add in 'debug=1', so it looks something like this:

SampleDataChart().go(debug=1)

The next time the chart has a problem, it should save a debug file. It's file name will be in the form of
'RL_classname_pickle.dbg', so for the above example you would have a file called
'RL_SampleDataChart_pickle.dbg'.

The following information will probably not be suitable for users, but may be of assistance to anyone supporting
the chart classes with problems.

Diagra Documentation $Revision: 42327 $

Page 59

To see the output from a debug memo, start up Python and do the following (where yourDebugFileName is the
name of the file produced by DebugMemo):

from reportlab.lib.utils import DebugMemo
dbg = DebugMemo(fn=yourDebugFileName,mode='r')
dbg.load()
dbg.show()

This will show information including the traceback produced, the data which produced the error, any command
line arguments, the version numbers for various files and so on.

The Diagnostic chart

We have produced a chart which will show a number of useful pieces of information about your system. These
include the current working directory, any arguments used from the sql of that chart and the path.

This chart is called diagnostic.py and is located in the rlextra\graphics\guiedit directory
(under your Python directory).

If you ever need to send it (either to us or whoever is providing support for your charts), make sure you export it
to a suitable format (e.g. GIF) and send that image.

Diagra Documentation $Revision: 42327 $

Page 60

 9 Using 'Knockout'
9.1 'Knockout' - what it is, and why you might want to use it

Simply put, 'knockout' is when a colour which overlays another colour 'knocks out' anything below it. It's the
removal of colour in one area to accommodate another colour (i.e. it's an area of a background colour that does
not print in that colour).

Using knockout adds the complication that the version of document (or graph or diagram) that you see in guiedit
will not necessarily match the one you get when you print it out. What are the advantages? If you are using a
printer who prints the black ('key') plate last, any black lines or grids used in construction of graphs and charts
will appear over the bars or lines that should be the focus of the chart. Knockout removes any lines under the
bars (or pie etc) so that they won't 'show through'.

Note that knockout is renderer specific. The whole concept is only useful in a renderer that supports it.
Currently it is only supported in renderPS_SEP - our Postscript renderer. This means that it isn't possible to use
knockout with bitmaps (and isn't currently supported in PDF, though that may change in the future).

Consider the following example, which illustrates all aspects of knockout with two squares. It uses non-spot
colours with the two colours overlapping, providing 8 combinations. This is how it would look in Guiedit.

Knockout example

C:\tmp\its_a_knockout\tko_combined

F 0 0 F 0 1

F 1 0 F 1 1

L 0 0 L 0 1

L 1 0 L 1 1
F=large square first, digits are KO values for large/small squares

Going from left to right, top to bottom, we can see that from the labelling that:

■ F00 has the large square drawn first and no knockout,
■ F01 has the large square drawn first and the knockout on for the small square,
■ L00 has the small square drawn first and no knockout,

■ L01 has the small square drawn first and the knockout on for the small square,
■ F10 has the large square drawn first and the knockout on for the large square,
■ F11 has the large square drawn first and the knockout on for both squares,
■ L10 has the small square drawn first and the knockout on for the large square,
■ L11 has the small square drawn first and the knockout on for both squares.

Notice how in Guiedit, when the large square is drawn first, the smaller square always appears on top of it, and
when the smaller square is drawn first the larger square always overwrites it.

The four illustrations on the next page show how it looks when split into its constituent colour separations.

Notice how where the little square has the knockout set, it 'punches out' a hole in anything below it. The cyan
separation of the squares labelled F01 and F11 show this quite well, where the small squares have knocked out
areas of the large squares.

Diagra Documentation $Revision: 42327 $

Page 61

F 0 1

F 1 1 L 1 0 L 1 1
F=large square first, digits are KO values for large/small squares

Knockout example: Cyan separation

F 0 1

F 1 1 L 1 0 L 1 1
F=large square first, digits are KO values for large/small squares

Knockout example: Magenta separation

F 0 1

F 1 1 L 1 0 L 1 1
F=large square first, digits are KO values for large/small squares

Knockout example: Yellow separation

F 0 0 F 0 1

F 1 0 F 1 1

L 0 0 L 0 1

L 1 0 L 1 1
F=large square first, digits are KO values for large/small squares

Knockout example: Black ('Key') separation

Diagra Documentation $Revision: 42327 $

Page 62

L01 and L11 also have the knockout set on the small squares, but nothing is punched out of the large square for
these. This is because our implementation of knockout is dependant on the ordering of objects.

When knockout is set on an object, it will knockout anything which has already been drawn (i.e. 'below' it in the
ordering of items on the canvas). In these L01 and L11, the large square hasn't been drawn yet when the small
one is created, so there is nothing there to knockout.

This is also illustrated by the squares labelled L10 and L11 in the Yellow separation. Because the large square
has knockout set and is drawn second, it knocks out the smaller square - and since the smaller square is smaller,
it is removed completely.

9.2 How to use knockout

OK, so now we know what knockout is, how do we actually use it?

We saw about the spotName and density attributes for colours (CMYK and PCMYK colors) in section 4.2
("Working with Colours"). There is another optional attribute called 'knockout'. This parameter is optional, if it
isn't specified it defaults to None. None in this case means 'use the default' (see below).

This means that knockout is an attribute of a colour rather than a shape or object. If knockout is set to 1, then all
objects using that colour will knockout anything underneath them in the way we've already seen.

As an example, this is how the colour used for the big squares in the example is defined:

PCMYKColor(100,100,0,0,density=80,knockout=0)

The default is to have knockout set to 1 - so everything 'knocks out'. This can be changed by adding a line to the
file rl_config.py. If you add the line :

knockout = 0

to the rl_config file, knockout will be turned off (and 'knockout = 1' turns it back on again). Omitting it
altogether also turns it back on by reverting to the default.

	Diagra Documentation
	Contents
	Overview
	About this document
	What is EPSCHARTS?
	What is Diagra?
	Other Documentation
	Limitations and Bugs

	Installation
	Using the Drawing Editor to Create Static Charts
	Introduction to the Drawing Editor
	Creating a New Project
	Adding Widgets
	Setting Widget Attributes
	Simplifying Attributes

	Saving Your Project
	Exporting to Different Formats
	Opening Existing Files
	Adding Primitives (another way to add widgets)

	Working with Charts
	Working with Collections
	Adding New Attributes to a Collection

	Working with Legends
	Working with Colours
	Working with Fonts
	Formats and Formatters
	DecimalFormatter
	NA_Label and naLabel
	Format Strings

	Creating Data Aware Charts
	Introduction to DataAwareDrawings
	Setting the Data Source
	Setting the Data Associations
	Example 1: Slidebox.py
	Running the resulting scripts
	Example 2: Dotbox.py
	Example 3: Horizontalbarchart.py
	Example 4: Verticalbarchart.py
	Example 5: Linechart.py
	Example 6: SectorCylinderChart

	More about Using Axes
	ValueAxis

	More on Data Sources
	
Making a Simple Chart Data Aware
	
Changing the Data Associations on an Existing Chart
	Data Association Types
	scalar
	vector
	matrix
	tmatrix
	rowmap

	New Drawing Editor Features
	
Test Mode
	
Errors
	
Diagnostics

	Using 'Knockout'
	
'Knockout' - what it is, and why use it
	
How to use knockout

