Lombard Business Park 103 Bayard Street
8 Lombard Road New Brunswick
Wimbledon New Jersey, 08901

London, ENGLAND SW19 3TZ USA

Preppy Spec

Contents
Goals

1.1 Introduction

1.2 Intended Use

1.3 Operations

1.4 Recursive Imports of preppy modules
1.5 NonDirectives

1.6 Directives

1.7 Static Compliation

1.8 Syntax Checking

1.9 Additional Notes

Preppy Spec Revision: 1.3

Preppy Spec

Title: preppy spec

Version: Revision: 1.3

Aut hor: Aaron Watters (aaron@ eportl ab. con)
Status: Fina

Type: Design Specification

Created: 5-Cct-2000

Goals:

Preppy isintended as asimple and fairly general method for preprocessing text files containing special markup
(which may contain loops, conditional flow control and generic python code) into python programs.

I nstallation and Dependency:
preppy requires the following Python libraries to be available for import:

string, sys, os, traceback, nd5

I ntroduction

This document describes the operations of the module preppy.py. It isintended for an audience of proficient
python programmers and is not intended as a user guide for novices.

Preppy isintended as a simple and fairly general method for preprocessing text files containing special markup
into python programs. The markup may contain loops and conditional flow control and generic python code. A
module generated by preppy sends text output to standard output. Nondirectives in the source file are sent
unmodified and directivesin the source file result in computation which may result in substitutions into the text
output or evaluation of flow control that decides whether and how many times segments of text are injected into
the output stream.

An example use for Preppy would be to generate a series of similar HTML files from the results of database
queries -- where the general form of the document remains fixed but certain data el ements change.

For example consider the Preppy source file

<ht m ><head><titl e>{{nane}}</titl e></head><body>
hello ny nane is {{nanme}} and | am

{{if sex=="f":}} a ga

{{elif sex=="m':}} a guy

{{else:}} neuter {{endif}}

</ body></htni >

then with

dictionary = {"name": "Fred Flintstone", "sex": "ni'}

the preppy output for this preprocessor source wedded with the dictionary input is
<ht ml ><head><titl e>Fred Flintstone</title></head><body>
hello ny nane is Fred Flintstone and | am
a guy
</ body></ ht m >
Alternatively with

dictionary = {"name": "Wl ma Flintstone", "sex": "f"}

We obtain output

Page 3

Preppy Spec Revision: 1.3

<ht ml ><head><title>W Il nma Flintstone</title></head><body>
hello nmy nane is WIim Flintstone and | am
a gal
</ body></htm >

Note that although these examples are using HTML, Preppy does no checking of any sort on whether it isvalid.
The only things Preppy acts on are the Preppy directives contained within double curly braces.

I ntended Use

Preppy isintended for usein a professional environment with testing. In particular there are few provisionsto
prevent infinite loops or NameErrors, or Divide by Zero errors, or other problems familiar to professional
programmers. In particular the preppy source

{{script}}fromfoo inport bar; bar(){{endscript}}

may result in an infinite loop or a NameError and we make no provision to attempt to avoid this problem.
Similarly for

{{while 1}}
INFINITE LOOPI T {{X}}
{{endwhi | e}}

Thisisonly one example of many where using the preppy module may result in errors or bugs.

Operations
Load a preppy module (possibly from source text) using

, source_extension=". prep",
ver bose=0, savefile=1, sourcetext=None)

This function will look for the python module named "name" and if if exists check to see that it matches the
preppy source module name+source_extension in the specified directory. If the module does not exist or does
not match a new python module will be built from the source file, stored as a python module name+".py" in the
directory (which must be writable if the modules don't match.)

If you do not want to save the regenerated module text then use savefile=0 and no file will be written during the
load (but a matching existing python module will still be preferred).

If the source module is not present, but the python module is present the python module will be assumed correct
and used. When the source text and the generated python module match the python code will not be regenerated
(as an optimization).

The preppy module itself will keep a cache of those modules previously built by preppy and will not reexecute
the test/generation code when a module of the same name is requested twice -- instead it will provide the
previously built module.

It isalso possible to use preppy to make a module without any use of the filesystem. In this case provide source
text as a string with a module name (of no significance) to getModule

m = get Modul e(" dummynodul e, sourcetext=my_string)

In this case (when sourcetext is provided) no file will be read and no file will be generated. The module m will
be constructed in memory for use by the current process only.

The entry point for a Preppy moduleis the function

Page 4

Preppy Spec Revision: 1.3

mrun(dictionary, __ wite__=None, outputfil e=None)

Where dictionary provides external information to the run function. An example usage might be

m = get Modul e("sal utation", directory="/usr/lib/preppy")
mrun({"name": "WIm Flintstone", "sex": "f"})

Run has a second argument which allows the default "write" operation to be redefined. For example to append
the output text segmentsto alist instead of writing to afile use:

L=1]
app = L.append
mrun(dictionary, _ wite__=app)

NOTE: Thiswill work only if the any script directive code segments either do not directly produce text output
themselves (recommended) or usethe write function instead of printing directly to standard output.

Run has a third optional argument which allows the program to specify afile to use as the standard output for
the function. In this case print statements will work (since sys.stdout will be set to the file while run() executes
and set back to whatever it was previously afterwards. Thus you can call

f = open("flintstone.htm ", "w')
m run(di ctionary, outputfile=f)

WARNING: the preppy module will signal an error if both __ write and outpuitfile are defined -- use one or
the other or neither, not both.

Recursive Imports of preppy modules:

Recursive imports of preppy modules should use getModul e which guarantees that once the module is loaded
once it will not be loaded a second time. At present there is no special directive to do this. Use a script directive.

NonDir ectives

Text not recognized as directives (or partial erroneous directives) is sent to standard output unmodified by the
run() function.

Directives

Directives are set off by

STARTDELI M TER = "{{"
ENDDELI M TER = "}}*"

these modul e constants can be altered, but alteration may result in parsing difficulties if the replacements are not
chosen carefully.

NOTE ABOUT ESCAPING: The string { &{ will be trandated to {{ anywhere in the text after delimiters have
been identified. Similarly }$} will betrandated to }}. Furthermore $$ will trandate to $. To specify two $'sin
sequence use $$$$. Single $'swill be left alone outside of {${ or } $}.

Below are the discussions of the directivesin turn.

token: {{token}}

Page 5

Preppy Spec Revision: 1.3

This construct is recognized if the token does not match any of the other directives. The result of this directiveis
the value of token evaluated as a python expression in the context of the m.run() function. An example might be

{{dictionary["name"] +2}}

Theresult of the evaluation isintroduced into the output stream (using standard python string conversion, if
needed).

eval: {{eval}}python_expression{{endeval}}

Thisisalonger way to spell {{ python_expression}} :). It is useful for larger expressions like

{{eval}}

a_conpl ex("and", "very", "verbose", function="call")
{{endeval }}

The expression is evaluated and the result isinserted in the output stream asin token.

WARNING: for token, eval, and script any newlinesin the code text will be automatically indented to the
proper indentation level for the run() module at that insertion point. Thisis only aconcern for triple quoted
strings. If this may be an issue don't use triple quoted strings in preppy source. Instead of

x = "

a string
use
X = ("\n"
"\ta string\n"
)
or similar.

NOTE: inside the script and eval directivesthe STARTTAG {{ and ENDTAG }} will be ignored unless they
occur within {{endeval}} or {{endscript}} respectively.

script: {{script}}python_code_line{{endscript}}
which can also be

{{script}}

many

l'i nes

i ndent ed
properly
{{endscript}}

This executes a sequence of python code within the context of the run() function. An example would be

{{script}}inmport math; x = nath.sin(math.pi/4.0){{endscript}}

or

{{script}}
i nport math
x = math.sin(nmath. pi/4.0){{endscript}}

Page 6

Preppy Spec Revision: 1.3

RESTRICTION: in the multiline case the indentation should follow Python conventions (of course) and any
initial indentation should be character for character the same between the lines of code (except for completely
whitelines). In particular if the first line begins with 8 spaces the next line should not begin with a TAB.

SCRIPT RECOMMENDATION 1: If possible the script tags should not directly produce standard output, but
instead define string variables that are introduced in token directives.

SCRIPT RECOMMENDATION 2: If ascript must produce standard output itself it should use the function

__wite__(string)

which is always defined in the context of the run() function and allows the output to be redirected flexibly
without modifying sys.stdout. In particular the script should not use the "print" statement or other direct writes
to sys.stdout.

SCRIPT RECOMMENDATION 3: If you ignore the first 2 recommendations then never use the second
argument of the run() function to redirect the output -- reset sys.stdout instead using the outputfile=file third
argument. In this case the generated function cannot send output to any structure which doesn't support the
Python file protocol.

if forms

{{if condition}} block {{endif}}

{{if condition}} blockl {{else}} block2 {{endif}}

{{if condition}} blockl {{elif condition2}} block2 {{endif}}
{{if condition}} blockl {{elif condition2}} bl ock2

{{else}} block3 {{endif}}

...etcetera...

This conditionally executes segments of text and directives. each condition should be a python expression in the
context of the run() function. The blocks may contain other directives and text.

for loops

{{for for_target}} block {{endfor}}

Thisimplements afor loop in preppy source. The for_target should follow normal python conventions for
python for loops. The resulting python code is roughly

for for_target
i nterpretation_of (bl ock)

while loops

{{while condition}} block {{endwhile}}

Thisimplements awhile loop in preppy source. The condition should be a python expression. The resulting
python code is roughly

whi l e condition
i nt erpretation_of (bl ock)

STATIC COMPILATION

To statically compile a preppy module once and for al you can use preppy as command line program. For
example suppose the example file given above isin " ./flintstone.prep” in the same directory as preppy. Then
compileit using

Page 7

Preppy Spec Revision: 1.3

C:\reportlab\repository\rlextra\preppy> preppy.py flintstone
no nodul e flintstone found (or error)

CHECKSUMS DON' T MATCH

regenerating python source from.\flintstone.prep

Y ou can then test it using a static import

C:\reportlab\repository\rlextra\ preppy>pyt hon

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on wi n32
Copyright 1991-1995 Stichting Mathenati sch Centrum Ansterdam

>>> fromflintstone inport run

>>> D= {'sex': 'm, 'name': 'george'}

>>> run(D)

<ht m ><head><tit| e>george</titl e></head><body>
hello ny nane is george and | am
a guy

</ body></ ht m >
>>>

Note that preppy modules which do not dynamically import other preppy modules may be used " stand-al one"
without the preppy module itself present.

SYNTAX CHECKING:

Python code expressions and code blocks are checked for syntactic correctness using the Python compiler
during generation in an attempt to detect errorsin a helpful way during code generation. Partial code blocks or
expressions are not allowed.

For example the following will result in errors reported at generation time.

{{5*}} {{10}} (5* is not a conplete expression)

and

{{script}}

if x=40: # syntax error in expression x=40
y =9

{{endscript}}

and

{{script}}

if x==40: # inconplete if statenent
{{endscript}}

the value of x is 40

and
{{if x==40: y=9}} (not a valid if directive)

However NameErrors or other run time errors which are not detected by the Python compiler will not be
detected at generation time. For example the compiler will not understand that thisisan invalid function call (it
is syntactically acceptable to the grammar)

{{ "this"("doesn't work") }}

This error will be detected during execution of the run() function if and when the code segment containing it is
executed.

... TypeError: call of non-function (type string)

Page 8

Preppy Spec Revision: 1.3

ADDITIONAL NOTES:

Y ou may define classes and functions in scripts but remember that they are defined in the local context of the
run() function and do not have accessto local variablesin the run() function. Any variable you wishto usein a
class or function (except for __write_ and dictionary and outputfile, the run function arguments) can be
declared global in the script

gl obal variable

(But note that thisis adlightly dangerous thing to do in the unlikely event that the generated moduleisusedin a
multithreaded python application). Also if you wish to make the classes or functions available to other modules
you must declare them global and the run() function must be executed at |east once before the exported
functions or classes are used (NOT RECOMMENDED!).

WARNING: extrawhitespace at the end of alineis discarded in the source. (rationale: had problems with extra
carriage returns at ends of some lines and this was an easy fix, but AFAIK it may need to be undone at some
later timeif trailing whitespace is needed sometime...).

Commenting your code: Thereis no specific Preppy form of comments. It allows you to use python comments
inside its directives, or you can use the style of comments in whatever language preppy is processing (egin
HTML). Be careful about mixing the two. Preppy will always execute preppy directives, no matter what
surrounds them. So attempting to comment out Preppy directives with HTML comments will not work -
something that's easily doneif you are not concentrating.

<l--
{{# if this wasn't a comment, Preppy would execute it}}
-->

Page 9

	Preppy Spec
	Contents
	Goals

	Introduction
	Intended Use
	Operations
	Recursive Imports of preppy modules
	NonDirectives
	Directives
	Static Compilation
	Syntax Checking
	Additional Notes

