
Welcome to PythonPoint
...a library for creating presentation slides.

PythonPoint lets you create attractive and consistent presentation slides
on any platform. It is a demo app built on top of the PDFgen PDF
library and the PLATYPUS Page Layout library. Essentially, it
converts slides in an XML format to PDF.

It can be used right now to create slide shows, but will undoubtedly
change and evolve. Read on for a tutorial...

Part 1 – Feature Overview

XML Notation
You create slides in a text editor with a basic XML syntax looking like
this:

<frame x="160" y="72" width="600" height="468"
 leftmargin="36" rightmargin="36">
 <para style='Heading1'>
 Welcome to PythonPoint
 </para>
 <para style='BodyText'>
 ...a library for creating presentation slides.
 </para>
</frame>

Pythonpoint then converts these into slides. Just enter "pythonpoint.py
myfile.xml" to create a PDF document (usually called "myfile.pdf", but
you specify that in the XML).

Page Layout Model
The Page Layout model comes from PLATYPUS (Page Layout and
Typography Using Scripts), a key component of the toolkit. This
covers concepts such as:

• Reusable 'Drawable Objects'

• Frames into which objects flow (like this one, around which we
have drawn a border)

• Style Sheets for text, table cells, line styles etc.

• Wrapping, page breaking an document management logic

Everything is open and extensible. I hope a library of reusable objects
such as charts and diagrams will grow up.

Reuse and Consistency – Sections
You can create a 'section' spanning some or all tags in the presentation
and place graphics on this. The blue border and title come from the
section. Here's how we did the border:

<presentation filename='pythonpoint.pdf'>
 <section name = 'Main'>
 <!-- any graphics in the section go on all its pages as a backdrop -->
 <rectangle x="20" y="510" width="800" height="65" fill="(0,0,1)"/>
 <rectangle x="20" y="20" width="65" height="555" fill="(0,0,1)"/>
 ...all slides go here...
 </section>
</presentation>

Thus you can re-brand an entire presentation for a new audience in
seconds.

Style Sheets
Paragraph styles are defined externally. You may specify a filename
from which to load a stylesheet with the stylesheet tag.

Thus you can have different sizes and formats by switching stylesheets,
or colour and black-and-white options.

When they are added, tables will be driven by line and cell styles in a
similar way.

Special Effects
Acrobat Reader supports tags to define page transition effects. If you
are reading this on screen, you should have seen a selection of these:

• Split

• Blinds

• Box

• Wipe

• Dissolve

• Glitter

Each has a range of options to fine-tune.

When they are added, tables will be driven by line and cell styles in a
similar way.

Outlines and Hyperlinks
By default, we generate an outline view in the left pane to help you
navigate. Hyperlinks within documents are also possible.

As far as we know, this is the first PDF library to expose these features.

This is a
multi-line string

placed directly on the page.

It can be left-aligned,
centred,

or right-aligned. A Custom Shape

Basic Shapes
Here are some of the basic shapes available for decorating pages...

Tables
The Table tag lets you paste in bulk data and format it attractively:

Division Jan Feb Mar Q1 Total
North 100 115 120 335
South 215 145 180 540
East 75 90 135 300
West 100 120 115 335

Features Coming Soon
This is the first version that runs. A lot can now be added fairly easily:

• Preprocessor to let you enter paragraphs and bullets as one block
of text, with less tag typing!

• PIDDLE drawings

• PINGO drawings – 'Object Graphics' tags with grouping and
coordinate transformations

• Speaker notes and a mode to print them

• Tools to archive slides in a database and build presentations to
order

...what else can YOU think of?

Part 2 – Reference
This section covers all command line options and tags currently in use.

Command Line Options
Usage (NT, or executable Unix script):
 pythonpoint.py [/notes] myslides.xml
or (Win9x or non-executable script)
 python pythonpoint.py [/notes] myslides.xml

Notes:

• The resulting PDF file has the same name as the input file.

• The Speaker Notes mode prints a shrunken canvas with room for
notes around the edge. To create notes, make an extra frame off
the page. See the source of Pythonpoint.xml slide 001 for an
example.

Tag "presentation"

This is the outermost tag in an XML file and is always required.

Attributes:
filename (required)

Can Contain:
section, stylesheet, slides

To Do:
Support for page sizes, opening modes

Tag "stylesheet"

This defines an external style sheet full of paragraph styles. For now,
these are Python modules conforming to a common interface, and
examples are given. If not declared, a default style sheet is used. You
are strongly advised to define your own style sheet, as the built-in one
will change a few more times.

Attributes:
path, module, function

Contained By:
Presentation, Section

Can Contain:
nothing

Example
<stylesheet module="modern" function="getParagraphStyles"/>

Tag "section"

A Section spans across a number of slides and can apply an overall
background to them. Place graphics directly within the section tag,
either before or after slides. This lets you re-brand a presentation very
quickly. Documents may contain multiple sections; nesting of sections
is not (yet) permitted.

Attributes:
name (required, but not used yet)

Contained By:
Presentation

Can Contain:
all graphic shapes; slides

Tag "slide"

Defines a single slide. The presentation effects are defined in the PDF
reference; best to just try the combinations.

Attributes (with defaults):
id (required)
title (required)
effectname: one of Split, Blinds, Box, Wipe, Dissolve, Glitter
effectdirection: '0','90','180' or '270'
effectdimension: 'H' or 'V' (Horiz./Vert.)
effectmotion: 'I' for inwards or 'O' for outwards
effectduration: time in seconds

Contained By:
Presentation

Can Contain:
all graphic shapes; frames

Tag "frame"

Defines a frame on the page which can hold content. You may have as
many frames as you like, to allow multi-column text or flow around
pictures.

Attributes:
x, y, width, height (all required): in points
leftmargin, rightmargin, topmargin, bottommargin (optional,
default to zero) – define the 'inner rectangle' within which content
flows
border (defaults to 'false'): whether to show a frame border – useful
when designing pages.

Contained By:
Slide

Can Contain:
all 'flowable objects' – paragraphs, images

Tag family – "Flowable Objects"

Flowable Objects currently include Paragraphs, Preformatted text (used
for code printing, where the line breaks and spaces matter) and inline
Images. More will be added in future. They negotiate with their
containing frame about height and width; paragraphs do what you
would expect, while images are centred.

Contained By:
Slide

Can Contain:
The three instances so far contain nothing.

Tag "para" – Paragraphs

Paragraphs are used for wrapping text. They are very simple – they
have a style attribute, and the stylesheet defines most attributes
externally. Currently we use a hack to handle 'bullets', which may be in
a different font (such as 'ZapfDingbats, specified in style) and offset to
the left. These are used for bullets, numbering and definition lists This
will vanish as soon as one can switch fonts in mid-paragraph (due mid
April).

Attributes:
style (defaults to 'Normal') – reference to stylesheet
bullettext – text for the optional 'bullet' section. To be deprecated.

Contained By:
Frame

Can Contain:
Their text

Tag "prefmt"

This is used for printing code, or other text which contains line breaks.

Attributes:
style (defaults to 'Normal') – reference to stylesheet

Contained By:
Frame

Can Contain:
The text to be displayed

Tag "image" – flowing images

This is used for an image to be displayed inline within the frame. It
will be drawn at a scale of 1 pixel to 1 point, and centred in the frame.

Attributes:
filename (required)

Contained By:
Frame

Can Contain:
Nothing

To do
Rename it 'flowing image'? Control over alignment and size if
needed. Image caching.

Tag "table" – tables

This lets you draw tables with a wide variety of formatting options.

Attributes:
widths (optional) in points (auto-sizes if not given)
heights (optional) in points (auto-sizes if not given)
style (optional) – name of a ReportLab tablestyle defined in the
stylesheet.
colDelim (optional) – the column delimiter string for bulk data;
defaults to a comma.
rowDelim (optional) – the line delimiter string for bulk data;
defaults to a carriage return.

Contained By:
Frame

Can Contain:
Bulk data, with the row and column delimiters specified

Tag family – "Drawable Objects"

These are objects which know how to draw themselves directly on the
page (or section template). Use them for designing the backdrop, and
for custom graphics.

Contained By:
Slide, Section

Can Contain:
Varies.

To Do:
Will include the full PINGO object model – a subset of SVG –
allowing any vector graphics at all.

Tag "fixedimage"

This is an image draw directly at a fixed position – for example, the
logo at top left of the page.

Attributes:
filename: required
x, y: required
width, height: optional, stretches image to fit box if present.

Contained By:
Slide, Section

Can Contain:
Nothing

Tag "rectangle"

Attributes:
x, y, width, height: required
fill, stroke: either 'None', or an (r,g,b) tuple.
linewidth: defaults to 0 (hairline)

Contained By:
Slide, Section

Can Contain:
Nothing

Tag "roundrect"

This is exactly like Rectangle, but with an extra 'radius' attribute
defining the corner radius in points – default is 6 points.

Tag "ellipse"

Draws an ellipse, defined by its bounding box. Note that it can create
circles if height and width are equal.

Attributes:
x1, y1, x2, y2: required
fill, stroke: either 'None', or an (r,g,b) tuple.
linewidth: defaults to 0 (hairline)

Contained By:
Slide, Section

Can Contain:
Nothing

Tag "polygon"

Draws a polygon from a list of points you provide.

Attributes:
points: list such as "(0,0),(50,0),(25,25)"
fill, stroke: either 'None', or an (r,g,b) tuple.
linewidth: defaults to 0 (hairline)

Contained By:
Slide, Section

Can Contain:
Nothing

Tag "line"

Draws a line.

Attributes:
x1, y1, x2, y2
stroke: either 'None', or an (r,g,b) tuple.
width: defaults to 0 (hairline)

Contained By:
Slide, Section

Can Contain:
Nothing

Tag "string"

This places strings directly on the page. They may have embedded
newlines (use a '\n' in the XML), in which case multi-line strings are
printed. Left, right and centre alignment are allowed.

Attributes:
x, y: required
color: RGB colour tuple such as '(0,1,0)'
font: default is 'Times-Roman'
size: default 12
align: default 'left', allows also 'right' or 'center'

Contained By:
Slide, Section

Can Contain:
The text of the string

Tag "customshape"

This looks in a specified Python module for a 'drawable object' you
write, and initialises it with arguments you provide before drawing.
This must provide a 'self.drawOn(canvas)' method.

Attributes:
path: where to look; searches Python path if None
module: module name
class: class name to create
initargs: tuple of arguments with which to initialize the class.
align: default 'left', allows also 'right' or 'center'

Contained By:
Slide, Section

Can Contain:
Nothing

Part 3 – To Do
• Lots of testing

• Text preprocessor to let you input text, styles and images in
something easier to type

• Support for Pingo (http://pingo.sourceforge.net/) drawings using
the Scalable Vector Graphics imaging model

• Proper caching of flowing images

• Basic Tables and Charts

• Use new XML parsers as wel as xmllib

• Slide indexing and database search tools

• Speaker Notes mode
Naturally, help is extremely welcome :-)

	Introduction
	Part 1
	XML Notation
	Page Layout
	Reuse
	Styles
	Special Effects
	Outlines and Hyperlinks
	Basic Shapes
	Tables
	Future Features

	Part 2
	Command Line Options
	Tag: Presentation
	Tag: Stylesheet
	Tag: Section
	Tag: Slide
	Tag: Frame
	Flowable Objects
	Tag: para
	Tag: prefmt
	Tag: image
	Tag: table

	Drawable Objects
	Tag: FixedImage
	Tag: Rectangle
	Tag: RoundRect
	Tag: Ellipse
	Tag: Polygon
	Tag: Line
	Tag: String
	Tag: CustomShape

	To Do

