
RML User Guide

Report Markup Language

Document generated on 2025/07/04 20:17:34

ReportLab, Wimbletech (Zone 2)
Wimbledon Reference Library
Wimbledon Hill Rd
Wimbledon
London SW19 7NB, United Kingdom

RML User Guide Document generated on 2025/07/04 20:17:34

Page 2

1. Introduction .. 4

1.1. ReportLab PLUS .. 4

1.2. Installation and Use .. 4

1.3. What is RML? .. 7

1.4. What is this document?... 7

1.5. Who is this document aimed at?... 7

1.6. Conventions used in this document .. 7

Part I - The Basics 8

2. Pages and page structures ... 8

2.1. XML syntax and RML ... 8

2.2. The prolog... 8

2.3. Document forms: stylesheet/pageDrawing vs template/stylesheet/story 10

3. Basic Text Operations.. 13

3.1. Coordinates and measurements .. 13

3.2. Using Colors ... 13

3.3. Using fonts.. 14

3.4. Basic text operations - setFont and drawString .. 14

4. Basic figures - lines and shapes ... 16

4.1. Rect, circle and ellipse.. 16

4.2. Fill and stroke ... 18

4.3. Lines and lineMode .. 18

5. Graphics vs Flowables ... 24

6. More about pages and page structures .. 25

6.1. More about template and pageTemplate .. 25

6.2. Frame and nextFrame ... 26

6.3. condPageBreak: conditional page breaks ... 26

6.4. storyPlace: out of band flowables... 26

6.5. pto: Please Turn Over Control.. 27

6.6. keepInFrame fixed space control.. 27

6.7. imageAndFlowables tag ... 28

6.8. More about stylesheets ... 28

7. Advanced text ... 31

7.1. Title... 31

7.2. Headings -- h1, h2, h3 .. 31

7.3. Paragraphs and paragraph styles... 31

7.4. The font tag... 32

RML User Guide Document generated on 2025/07/04 20:17:34

Page 3

7.5. Superscripts and subscripts... 32

7.6. Lists .. 33

7.7. Using multiple frames .. 34

7.8. Preformated text -- pre and xpre... 35

7.9. Greek letters.. 35

7.10. Asian Fonts ... 38

7.11. Paragraph Hyphenation .. 39

Part II - Advanced Features 40

8. Miscellaneous useful features.. 40

8.1. pageNumber.. 40

8.2. name, namedString and getName... 40

8.3. Seq, seqReset, seqChain and SeqFormat.. 40

8.4. Entities .. 44

8.5. Aliases .. 45

8.6. CDATA -- unparsed character data .. 45

8.7. Plug-ins: plugInGraphic and plugInFlowable .. 46

8.8. Integrating with PageCatcher: catchForms, doForm and includePdfPages 46

8.9. Outlines... 49

8.10. Form field tags.. 49

8.11. Interactive Form Field tags... 57

8.12. Colorspace Checking.. 61

8.13. Balanced Column ... 62

9. About Cross References and Page Numbers ... 63

9.1. the namedString tag and forward references .. 63

9.2. Multiple pass pdf formatting .. 63

9.3. Calculated Page Numbers: evalString .. 64

9.4. Generated RML .. 64

10. More graphics... 66

10.1. curves.. 66

10.2. paths.. 67

10.3. grids .. 70

10.4. Translations .. 70

10.5. scaling... 71

10.6. rotations .. 72

10.7. Skew ... 73

10.8. Generic affine transforms ... 74

10.9. About scale, rotate, and skew ... 74

RML User Guide Document generated on 2025/07/04 20:17:34

Page 4

10.10. Bitmapped images .. 75

10.11. Text Fields .. 75

10.12. place, illustration & graphicsMode .. 76

10.13. spacer .. 79

10.14. Form and doForm ... 79

10.15. Why use forms? .. 79

11. Conditional Formatting ... 81

11.1. Introduction .. 81

11.2. Tags .. 81

11.3. Operators .. 81

11.4. Examples .. 82

11.5. Reference .. 82

12. Printing.. 84

12.1. Crop Marks ... 84

12.2. Bleed... 84

12.3. CMYK Colours .. 85

12.4. Images in CMYK documents ... 86

12.5. Overprint and knockout control.. 86

12.6. Colour separations .. 87

12.7. Pagination ... 88

12.8. More information.. 88

Part III - Tables 89

13. Using tables ... 89

13.1. Block tables .. 89

13.2. Block table attributes .. 90

13.3. Block table styles.. 91

13.4. More about block tables ... 92

13.5. Using block table styles.. 93

Appendix A - Colors recognized by RML..107

Appendix B - Glossary of terms and abbreviations ..112

Appendix C - Letters used by the Greek tag ...115

Appendix D - Command reference ...116

RML User Guide Document generated on 2025/07/04 20:17:34

Page 5

1. Introduction

1.1. ReportLab PLUS

ReportLab's solution solves several central problems that ebusinesses face in creating publishing caliber reports
that are customized, produced in real time, in volume, and platform independent. Existing reporting tools are
limited to database reports, are typically Windows-based, have problematic restrictions on layout and graphic
design, and go straight to a printer. More complex publishing systems involve pipelines of applications which
are simply too unwieldy for real-time use in large scale environments

ReportLab's product suite allows direct creation of rich PDF reports on web or application servers in real time.
The tools run on any platform, can actively acquire data from any source (XML, flat files, databases,
COM/Corba/Java), place no limits on the output, and facilitate electronic delivery and archival. The ReportLab
suite lets you define your own business rules to automatically create custom online reports, catalogs, business
forms, and other documents

RML2PDF is a central component of the toolkit: a translator which converts high level XML markup into PDF
documents. Report Markup Language describes the precise layout of a printed document, and RML2PDF con-
verts this to a finished document in one step. In a dedicated reporting application, other components of our
toolkit handle data acquisition and preparation of the RML document.

RML2PDF on its own also fills a key technology gap. Our full toolkit relies heavily on the Python scripting lan-
guage. Nevertheless we recognize that IT departments and software houses have their own distinct skill sets and
development tools. A company may already have developed a rich 3-tier architecture with the key business data
in Java or COM objects on an application server. All they need is the formatting component. They can use ex-
actly the same techniques they use to generate HTML (XSLT, JSP, ASP or anything else) to generate an RML
file, and the program turns this into a finished document. Fast.

Unlike a number of other formatting languages, RML aims squarely at corporate needs. Paragraph, table and
page styles are kept in independent 'stylesheets', allowing reuse and global changes across a family of docu-
ments. The table model has been designed for efficient rendering of business data. And a plug-in architecture lets
you easily develop and add in custom vector graphics or page templates within the same tool set.

RML2PDF can also work in tandem with our PageCatcher product. PageCatcher is a support tool which extracts
graphical elements from PDF files for inclusion in documents generated by RML2PDF or the ReportLab core
API. Since any external program with the ability to print can produce PDF files, this means that a ReportLab
document can include graphical elements created by virtually any program. These imported elements can be
combined freely with text or graphics drawn directly into the document. For example an application can import
pages from a government tax form and draw text in the spaces provided to fill in the form. The resulting docu-
ment can then be combined with a cover letter at the beginning and supporting tabular data at the end -- all in a
single PDF document.

1.2. Installation and Use

To avoid duplication, the full installation instructions are always on ReportLab's web site at this address:

https://docs.reportlab.com/install/ReportLab_Plus_version_installation/

RML2PDF is a compiled Python programming language module. It can be used with options from a command
line, and also has a programmable API interface and may be used as a component of a larger Python language
installation. Since Python integrates with a wide variety of other languages, it is also possible to access
RML2PDF from C and C++ programs, COM and many other environments.

RML2PDF is delivered as part of ReportLab's 'rlextra' package and licensed under the name ReportLab PLUS.
This package depends on our 'reportlab' package and some other open source libraries, all detailed on the above
installation page.

https://docs.reportlab.com/install/ReportLab_Plus_version_installation/

RML User Guide Document generated on 2025/07/04 20:17:34

Page 6

RML2PDF requires a license key file to work in production mode. Without the license key each page produced
by RML2PDF will be visibly marked as an "evaluation" copy, and the file will be annotated invisibly as pro-
duced for evaluation purposes as well. With a valid license key file present, RML2PDF will run in production
mode and the PDF file generated will contain the licensing information. You can purchase a ReportLab PLUS li-
cense using your user account on our website http://www.reportlab.com. Once we issue you a '.pyc' license file
you will need to install it somewhere on your PYTHONPATH so that rml2pdf can find it.

Running RML2PDF from the command line

RML2PDF can be run from the command line, provided that you place it on your path. We normally ship this
module in compiled (.pyc) format, so you need a Python interpreter of the correct version to run it, and need to
know where it was installed. The installation process does not currently register a script for you. On Unix, you
may wish to add the directory to your path, or create a wrapper script in your bin directory.

python /path/to/rlextra/rml2pdf/rml2pdf.pyc filename.rml

On Windows, .pyc files are normally associated with the most-recently-installed Python interpreter, so you could
execute this...

c:\temp> c:\python26\lib\site-packages\rlextra\rml2pdf\rml2pdf.pyc filename.rml

After completing successfully the rml2pdf program will return to a command prompt. The output PDF file
should be created in the current working directory.

Calling RML2PDF from Python

RML2PDF can also be called directly from your own Python program using the rml2pdf.go(...) entry point.

There are two main ways the 'go' function can be used - either to generate the resulting PDF file on disk in the
file system, or to generate it in memory (useful for web applications returning the PDF directly to the user).

This example uses the 'go' function to create the output PDF file on disk:

from rlextra.rml2pdf import rml2pdf

rml = getRML() # Use your favorite templating laguage here to create the RML string
output = '/tmp/output.pdf'

rml2pdf.go(rml, outputFileName=output)

This is an example Django web application view generating a PDF in memory and returning it as the result of an
HTTP request:

from django.http import HttpResponse
from rlextra.rml2pdf import rml2pdf
import cStringIO

def getPDF(request):
 """Returns PDF as a binary stream."""

 # Use your favourite templating language here to create the RML string.
 # The generated document might depend on the web request parameters,
 # database lookups and so on - we'll leave that up to you.
 rml = getRML(request)

 buf = cStringIO.StringIO()

 rml2pdf.go(rml, outputFileName=buf)
 buf.reset()

RML User Guide Document generated on 2025/07/04 20:17:34

Page 7

 pdfData = buf.read()

 response = HttpResponse(mimetype='application/pdf')
 response.write(pdfData)
 response['Content-Disposition'] = 'attachment; filename=output.pdf'
 return response

The 'go' function has the following interface:

def go(xmlInputText, outputFileName=None, outDir=None, dtdDir=None,
 passLimit=2, permitEvaluations=1, ignoreDefaults=0,
 pageCallBack=None,
 progressCallBack=None,
 preppyDictionary=None, preppyIterations=1,
 dynamicRml=0, dynamicRmlNameSpace={},
 encryption=None,
 saveRml=None,
 parseOnly=False,
):

■ xmlInputText must be a string which contains the RML specification for the PDF document to be
generated.

■ outputFileName when specified overrides any output file name specified in the xml input text. You
may also pass in a file-like object (e.g. a StringIO, file object or web request buffer), in which case noth-
ing is written to disk.

■ outDir (output directory) parameter when present specifies the directory in which to place the output
file.

■ dtdDir is an optional DTD directory parameter which specifies the directory containing the DTD for
the current version of RML.

■ passLimit of None means "keep trying until done", of 3 means, "try 3 times then quit".

■ permitEvaluations when false disallows the evalString tag for security (e.g. web apps).

■ ignoreDefaults 1 means "do one pass and use the default values where values are not found".

■ pageCallBack is a callback to execute on final formatting of each page - used for counting number
of pages.

■ progressCallBack is a cleverer callback; see the progressCB function in
reportlab/platypus/doctemplate.

■ preppyDictionary if set to a dictionary indicates that the xmlInputText should be prepro-
cessed using preppy with the preppyDictionary as argument. If preppyDictionary is not None and
preppyIterations is >1 then the preppy preprocessing will be repeated preppyIterations
times (max of 3) with the same dict, to generate, e.g., table of contents.

■ preppyIterations - see preppyDictionary.

■ dynamicRml is an optional boolean field for whether the RML can be dynamically altered.

■ dynamicRmlNameSpace is for use with dynamicRml. It's a dictionary which you can add vari-
ables to for processing.

■ encryption if set it must be an encryption object, for example:
rlextra.utils.pdfencrypt.StandardEncryption("User", "Owner",
canPrint=0, canModify=0, canCopy=0, canAnnotate=0).

■ saveRml is useful for debugging dynamically generated RML. Specify a filename where the RML
should be saved.

■ parseOnly if set to True, will only parse the RML and not generate a PDF.

It is also possible to call rml2pdf from other programming languages (such as C++) by using standard methods
for calling a python callable. See the Python Language Embedding and Extension manuals.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 8

NB it is also possible to use the userPass, ownerPass, permissions & encryptionStrength at-
tributes of the document tag to make rml2pdf create an encrypted PDF.

For further information regarding the installation of your version of RML2PDF please see the release notes and
READMEs that come with the package.

1.3. What is RML?

RML is the Report Markup Language - a member of the XML family of languages, and the XML dialect used by
rml2pdf to produce documents in Adobe's Portable Document Format (PDF).

RML documents can be written automatically by a program or manually using any word processor that can out-
put text files (e.g. using a "Save as Text" option from the save menu). Since RML documents are basic text files,
they can be created on the fly by scripts in Python, Perl, or almost any other language.

RML makes creating documents in PDF as simple as creating a basic web page - RML is as easy to write as
HTML, and uses "tags" just like HTML. It is much easier than trying to write PDF programmatically.

1.4. What is this document?

This document is a user guide and tutorial for RML. It deals with RML as specified in the RML DTD - rml.dtd.
If your installation of RML uses a later version, you will need a later version of the DTD and of this tutorial.
Look on the ReportLab website (http://www.reportlab.com) for more details.

This document has been generated from RML. If you need another example of RML in action, look at the file
"rml_user_guide.rml" to see how this file was produced.

1.5. Who is this document aimed at?

This document is aimed at anyone who needs to write RML. It assumes that you have some experience with
some form of programming or scripting. Basic HTML is fine.

You do not have to be employed as a programmer or have extensive programming skills for this guide to make
sense. We have tried to keep it as simple as possible and to minimise confusion.

1.6. Conventions used in this document

It is more technically correct to call the various items in RML "elements", as you do in XML. However, since
we're assuming that more people know basic HTML than XML, we'll call them "tags" rather than elements in
this guide.

There are also a couple of typographical conventions we'll be using:

constant width
Throughout this User Guide, we'll be using a constant width typeface to highlight any literal ele-
ment of RML (such as tag names or attributes for tags) when they appear in the text.

8 point Courier

A smaller constant width font is used for code snippets (short one or two line examples of what RML
commands look like) and code examples (longer examples of RML which usually have an illustration
of the output they produce).

RML User Guide Document generated on 2025/07/04 20:17:34

Page 9

Part I - The Basics

2. Pages and page structures

2.1. XML syntax and RML

As with every XML dialect, RML requires correct XML syntax. If you are familiar with HTML, you should pay
special attention to the differences between XML syntax and some of the more forgiving constructs allowed in
HTML.

■ Attribute values must be enclosed in quotation marks. (e.g. you would have to use <document
filename="outfile.pdf">, since you couldn't get away with <document
filename=outfile.pdf>

■ A non-empty element must have both an opening and a closing tag. (e.g. a <document> tag must be
matched by a matching </document> tag). "Empty" elements are those that don't have any content,
and are closed with a "/>" at the end of the same tag rather than having a separate closing tag. (e.g.
<getName id="Header.Title"/>)

■ Tags must be nested correctly. (i.e. "<i>text</i>" isn't valid, but
"<i>text</i>" is.)

■ On the whole, whitespace is ignored in RML. Except inside strings, you can format and indent your
RML documents in whatever way you consider most readable. (Inside text strings, whitespace is seen as
equivalent to a single space and line breaks are added automatically as needed during formatting. Other
than that, what you type is what is displayed on the page).

■ RML is case-sensitive. "Upper Case" is different from "upper case", "UPPER CASE" and "UpPeR
CaSe". The capitalization in the tag names is important.

2.2. The prolog

Every RML document must start with a number of lines:

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE document SYSTEM "rml.dtd">

This is called the prolog - you can think of it as the document 'header'.

<?xml ... standalone="no" ?>
This line is the XML declaration. This is optional, but recommended.

version="1.0"
This attribute tells the parser which version of XML it should use - in this case 1.0.

standalone="no"
This tells the parser that it needs an external Document Type Definition (more on DTDs below).

encoding="iso-8859-1"
The "encoding" attribute sets the encoding you want the PDF file to use. The ISO-8859-1 encoding cov-
ers the character set known as "US-ASCII", plus things like the accented characters used in most West-
ern European Languages and some control characters and graphical characters. ISO-8859-1 is also
known as "Latin-1"(or "Latin Alphabet No 1"). Other common encodings are utf-8 (same as US-AS-
CII for "normal" characters like A-Z and 0-9, but also covers the whole Unicode character set) and
cp1252 (a Microsoft Windows variant of ISO-8859-1). You may use any encoding you wish with
RML, as long as the encoding attribute here matches the encoding you actually used to write the RML
file!

RML User Guide Document generated on 2025/07/04 20:17:34

Page 10

<!DOCTYPE... "rml.dtd">
This line tells the parser where the Document Type Definition is located. The DTD formally specifies
the syntax of RML.

For documents written in RML, the DTD should always be the current version of rml.dtd. (The rml
DTD should always be called rml.dtd.

Unlike other dialects of XML, RML does not allow you to provide relative paths to the DTD, nor a full
URL. It must always be the name of the DTD, which must live in the same directory as the exe or py-
thon program rml2pdf.

This makes it easy to predict where the RML DTD will be and prevents you using an old DTD that hap-
pens to be sitting around your disk somewhere. It also allows us to make sure that when you create a file
with RML, the PDF document will be created in the same directory as the RML file, and to allow relat-
ive pathnames in the document tag.

The prolog section is common to all XML documents. In addition to this, RML requires another line following
the prolog:

"<document filename="outfile.pdf">"
This line gives the name that you want the output PDF file created with. This line also starts the docu-
ment proper - and must be matched by a </document> tag as the last line in the document, in the
same way that an HTML file is bracketed by <HTML> and </HTML>.

The filename you give can just be a simple filename, a relative path (eg ..\..\myDoc.pdf will cre-
ate it in the directory two levels up from the one your RML document is in), or a full pathname (eg
C:\output_files\pdf\myProject\myDocument.pdf or
/tmp/user1/myScratchFile.pdf). If you just supply a filename, the output file will be cre-
ated in the same directory as your RML file. (The same principle works with anywhere else you may
need to give a filename - they are relative to where the document lives on your disk, not to where
rml2pdf is).

The <document> tag has three other attributes. compression specifies whether the produced PDF should
be compressed if at all possible. It can take the values 0 | 1 | default for off, on or use the site-wide de-
fault (as specified in reportlab_rl_config). invariant determines whether the produced PDF should be invari-
ant with respect to the date and the exact contents. It can take the values 0 | 1 | default for off, on or use
the site-wide default (as specified in reportlab_rl_config). debug determines whether debugging/logging mode
should be used during document production. It can take the values 0 | 1 for off or on.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 11

2.3. Document forms: stylesheet/pageDrawing vs template/stylesheet/story

There are two possible valid structures for your document to have, depending on how simple you want it to be.

For very simple documents, you need the prolog, followed by a stylesheet and any number of pageDrawings.
A pageDrawing is a graphical element on the page, or simple text string (i.e. it is just placed onto the page in
the location you specify, and no attempt is made to check if it flows off the page).

EXAMPLE 1

<!DOCTYPE document SYSTEM "rml.dtd">

<document filename="example_1.pdf">

 <stylesheet>

 </stylesheet>

 <pageDrawing>

 <drawCentredString x="4.1in" y="5.8in">

 Hello World.

 </drawCentredString>

 </pageDrawing>

</document>

(All the examples given in this document can be found online at https://docs.reportlab.com/rmlsamples/ or in
the mercurial repository at https://hg.reportlab.com/hg-public/rlextra-examples which is a copy of the tests in
our main repository.)

Figure 1: Output from EXAMPLE 1

https://docs.reportlab.com/rmlsamples/
https://hg.reportlab.com/hg-public/rlextra-examples

RML User Guide Document generated on 2025/07/04 20:17:34

Page 12

This is the most basic RML document you can get. It is the traditional "Hello World". All it does is place the
string of text "Hello World" into the middle of your A4 page. Not very useful in the real world, but enough to
show you how simple RML can be.

Notice how it does have a stylesheet, but it is empty. Stylesheets are mandatory, but they don't need to
actually contain anything. Also notice how in the drawCenteredString tag, the co-ordinates are enclosed
in quotation marks - they are attributes, and so need to live inside quotes. And if you look at the draw-
CenteredString tag, these attributes are inside the tag (actually inside the angle brackets), then the content
of the string comes after it, then the tag is closed by its matching </drawCenteredString> tag. All tags
with content need their matching closing tag - the <document> and <stylesheet> tags are also parts of
matching pairs.

One last thing to notice is the DOCTYPE line - for all these examples, we are assuming that the DTD is in the
same directory as the example file itself. This may not always be the case.

For a more complex RML document, you can use the more powerful template/stylesheet/story form of docu-
ment. In this, a file contains the following three sections:

■ a template
■ a stylesheet
■ a story

The template tells rml2pdf what should be on the page: headers, footers, any graphic elements you use as a back-
ground.

The stylesheet is where the styles for a document are set. This tells the parser what fonts to use for paragraphs
and paragraph headers, how to format tables and other things of that nature.

The story is where the "meat" of the document is. Just like in a newspaper, the story is the bit you want people to
read, as opposed to design elements or page markup. As such, this is where headers, paragraphs and the actual
text is contained.

Figure 2: Output from EXAMPLE 2

EXAMPLE 2

<!DOCTYPE document SYSTEM "rml.dtd">

<document filename="example_2.pdf">

 <template>

 <pageTemplate id="main">

 <frame id="first" x1="72" y1="72" width="451" height="698"/>

 </pageTemplate>

 </template>

 <stylesheet>

 </stylesheet>

 <!-- The story starts below this comment -->

RML User Guide Document generated on 2025/07/04 20:17:34

Page 13

 <story>

 <para>

 This is the "story". This is the part of the RML document where

 your text is placed.

 </para>

 <para>

 It should be enclosed in "para" and "/para" tags to turn it into

 paragraphs.

 </para>

 </story>

</document>

The <pageTemplate>, <pageGraphics>, <frame> and <paraStyle> tags will all be covered in more
detail later on in this guide.

Paragraphs start with a <para> tag and are closed with a </para> tag. Their appearance can be controlled
with the <paraStyle> tag.

RML allows you to use comments in the RML code. These are not displayed in the output PDF file. Just like in
HTML, they start with a "<!--" and are terminated with a "-->". Unlike other tags, comments cannot be nes-
ted. In fact, you can't even have the characters "--" inside the <!-- --> section.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 14

3. Basic Text Operations

3.1. Coordinates and measurements

In RML, the page origin is in the bottom left hand corner (0,0). Any point on the page can be specified by a pair
of numbers - a pair of X,Y co-ordinates. The X co-ordinate states how far to the right the point is and the Y co-
ordinate states how far up it is.

When an RML element has co-ordinates, the co-ordinate origin is the lower left corner. In the case of elements
in a pageGraphic, the origin of the lower left corner of the page. For elements within an
<illustration>, the origin is the lower left corner of the bounding box declared by the
<illustration>.

These co-ordinates (and any other measurements in an RML document) can be given in one of four units. Inches
use the term 'in', centimetres use the term 'cm', and millimetres use the term 'mm'. If no unit is specified, RML
will assume that you are giving a measurement in points - one point is 1/72 of an inch. You can also explicitly
use points with the term 'pt'.

As an example, the following pairs of co-ordinates all refer to the same point. Notice that there is no space
between the number and any unit that follows it.

(4.5in, 1in)
(11.43cm, 2.54cm)
(324, 72)

You can mix and match these units within RML, though it generally isn't a good idea to do so. The co-ordinate
pair (3.5in, 3.5cm) is valid, and won't confuse the RML parser - but it may well confuse you.

3.2. Using Colors

There are three ways to specify colors in RML:

■ by red/green/blue value (e.g. "#ff0000" or "(0.0,0.0,1.0)")

■ by cyan/magenta/yellow/black value (e.g. "#ff99001f" or "(1.0,0.6,0.0,0.1)")

■ by color name using standard HTML names

The RGB or additive color specification follows the way a computer screen adds different levels of the red,
green, or blue light to make any color. White is formed by turning all three lights on full (1,1,1).

The CMYK or subtractive method follows the way a printer mixes three pigments (cyan, magenta, and yellow)
to form colors. Because mixing chemicals is more difficult than combining light there is a fourth parameter for
darkness. A chemical combination of the CMY pigments almost never makes a perfect black - instead producing
a muddy brown - so, to get black printers use a direct black ink rather than use the CMY pigments.

The name CMYK comes from the name of the four colors used: Cyan, Magenta, Yellow and "Key" - a term
sometimes used by printers to refer to black.

Because CMYK maps more directly to the way printer hardware works it may be the case that colors specified in
CMYK will provide better fidelity and better control when printed.

The color names which RML recognizes are mostly drawn from the HTML specification. (For a list of these col-
or names recognized by RML, see Appendix A).

RML User Guide Document generated on 2025/07/04 20:17:34

Page 15

3.3. Using fonts

Font names are given in the following format:

Fontname-style

where fontname is the name of the font (e.g. Courier), and the style is its appearance (eg, Oblique, BoldOblique).

The only fonts supplied with Adobe's Acrobat Reader are the "14 standard fonts". These 14 standard fonts are:

Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique
Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Oblique
Symbol
Times-Bold
Times-BoldItalic
Times-Italic
Times-Roman
ZapfDingbats

Custom fonts can also be used in your document. RML supports TrueType and Type 1 fonts. In order to use
them, make sure they are on the appropriate path and then register them in the <docinit> section at the top of
the RML file.

Use the <registerTTFont> and <registerFont> tags to register them. To use a common set of fonts
together as bold, italic etc., you need to put them into a common grouping using the
<registerFontFamily> tag.

An example of how to use these tags with different font types and styles can be found in the file
rml2pdf/test/test_005_fonts.rml

3.4. Basic text operations - setFont and drawString

The simplest way to put text on a page is using the <drawString> tag. This places the "string" of text on the
page at the co-ordinates you give it. The only attributes you can give it are a pair of X and Y co-ordinates. After
the tag itself comes the string of text you want put on the page, and then you need the closing
</drawString> tag.

DrawString has a pair of companions. DrawRightString and drawCentredString both work in the
same way, but right justify the string and center it, respectively.

This is how they look in practice:

<drawString x="523" y="800">

 This is a drawString example

</drawString>

<drawRightString x="523" y="800">

 This is a drawRightString example

</drawRightString>

<drawCentredString x="523" y="800">

 This is a drawCentredString example

RML User Guide Document generated on 2025/07/04 20:17:34

Page 16

</drawCentredString>

To set the font that you want a piece of text to be, you need to use the <setFont> tag. This has two arguments
which are required - you need to give it the name of the font, and the size you want it displayed at.

A setFont tag looks like this:

<setFont name="Helvetica-Bold" size="17"/>

To use all the drawString commands, you need to use a tag called <pageGraphics>. This tag appears at
the start of a RML document, in the pageTemplate section. pageGraphics are the graphics that have to do
with a whole page (rather than just individual illustrations, as we will see later). pageGraphics can be used to
provide a background to a page, to place captions or other textual information on a page, or to provide logos or
other colorful elements. Whatever you use them for, they are always anchored to a spot on the page - they do not
wrap or flow with any text you might put into paragraphs.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 17

4. Basic figures - lines and shapes

4.1. Rect, circle and ellipse

As well as allowing you to place text on the page, pageGraphics also allows you to place shapes and graph-
ics on it.

The basic types of shape that RML allows you to use are:
rect (rectangle), circle, and ellipse.

A rect needs to have a list of attributes passed to it:
- the co-ordinates for the bottom left hand corner,
- its width and height,

It also has optional fill and stroke attributes, and a round attribute, which tell it if the corners should be
rounded off.

The circle needs the following attributes passed to it:
- the x and y co-ordinates of the point where its center should be,
- its radius

If you imagine the ellipse inside a rectangle, the x and y attributes give the co-ordinates for the bottom left
hand corner, and the width and height attributes give the co-ordinates for the top right hand corner of the
box.

All shapes also have two optional attributes:
- fill, which tells the parser if the shape should be filled in or not, and
- stroke which tells it if the shape should have its outline displayed.

Both these attributes take Boolean values as arguments. You can uses either "1" or "yes" to set them as on, or "0"
or "no" to set them as off.

The following example shows various combinations of attributes for each of the basic shapes. Notice how this
example starts with the XML definition - you can get away with not using it, but it is still better to make sure it is
there.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 18

Figure 3: Output from EXAMPLE 3

EXAMPLE 3

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>
<!DOCTYPE document SYSTEM "../rml.dtd">
<document filename="example_3.pdf">

<template>
 <pageTemplate id="main">
 <pageGraphics>

 <!-- set the font and fill colour for the title. -->
 <fill color="red"/>
 <setFont name="Helvetica" size="24"/>
 <!-- Use drawCentredString to place a title on the page -->
 <drawCentredString x="297.5" y="800">Simple Text and Graphics with RML.</drawCentredString>

 <fill color="red"/>
 <!-- look at the output - though a fill color is set, no fill is produced, -->
 <!-- since fill is set to "no" for the circle -->
 <circle x="127.5" y="672.75" radius="1 in" fill="no" stroke="yes"/>
 <fill color="green"/>
 <stroke color="black"/>
 <circle x="297.5" y="672.75" radius="1 in" fill="yes" stroke="no"/>
 <fill color="blue"/>
 <stroke color="black"/>
 <circle x="467.5" y="672.75" radius="1 in" fill="yes" stroke="yes"/>

 <fill color="black"/>
 <setFont name="Helvetica" size="9"/>
 <drawCentredString x="127.5" y="567.5">Circle - with stroke, but no fill.</drawCentredString>
 <drawCentredString x="297.5" y="567.5">Circle - with fill, but no stroke.</drawCentredString>
 <drawCentredString x="467.5" y="567.5">Circle - with both stroke and fill.</drawCentredString>

 <fill color="red"/>
 <ellipse x="77" y="382.25" width="110" height="170" fill="no" stroke="yes"/>
 <fill color="green"/>
 <stroke color="black"/>
 <ellipse x="247" y="382.25" width="110" height="170" fill="yes" stroke="no"/>
 <fill color="blue"/>
 <stroke color="black"/>
 <ellipse x="417" y="382.25" width="110" height="170" fill="yes" stroke="yes"/>

 <fill color="black"/>
 <drawCentredString x="127.5" y="357">Ellipse - with stroke, but no fill.</drawCentredString>
 <drawCentredString x="297.5" y="357">Ellipse - with fill, but no stroke.</drawCentredString>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 19

 <drawCentredString x="467.5" y="357">Ellipse - with both stroke and fill.</drawCentredString>

 <rect x="84.5" y="214.3" width="1 in" height="1.15 in" fill="no" stroke="yes"/>
 <fill color="green"/>
 <stroke color="black"/>
 <rect x="254.5" y="214.3" width="1 in" height="1.15 in" fill="yes" stroke="no"/>
 <fill color="blue"/>
 <stroke color="black"/>
 <rect x="424.5" y="214.3" width="1 in" height="1.15 in" fill="yes" stroke="yes"/>

 <fill color="black"/>
 <drawCentredString x="127.5" y="199.1">Rect - with stroke, but no fill.</drawCentredString>
 <drawCentredString x="297.5" y="199.1">Rect - with fill, but no stroke.</drawCentredString>
 <drawCentredString x="467.5" y="199.1">Rect - with both stroke and fill.</drawCentredString>

 <rect x="84.5" y="56.5" width="1 in" height="1.15 in" fill="no" stroke="yes" round="0.15 in"/>
 <fill color="green"/>
 <stroke color="black"/>
 <rect x="254.5" y="56.5" width="1 in" height="1.15 in" fill="yes" stroke="no" round="0.15 in"/>
 <fill color="blue"/>
 <stroke color="black"/>
 <rect x="424.5" y="56.5" width="1 in" height="1.15 in" fill="yes" stroke="yes" round="0.15 in"/>

 <fill color="black"/>
 <drawCentredString x="127.5" y="41.25">Rect - with stroke and round, but no fill.</drawCentredString>
 <drawCentredString x="297.5" y="41.25">Rect - with fill and round, but no stroke.</drawCentredString>
 <drawCentredString x="467.5" y="41.25">Rect - with stroke, fill and round.</drawCentredString>

 </pageGraphics>
 <frame id="first" x1="0.5in" y1="0.5in" width="20cm" height="28cm"/>
 </pageTemplate>
</template>

<stylesheet>
</stylesheet>

<story>
<para></para>
</story>

</document>

4.2. Fill and stroke

If you look at the example 3, you will see that as well as having fill and stroke attributes for the shapes,
there are separate <fill> and <stroke> tags.

Inside the tag for a shape (such as rect), fill and stroke simply tell rml2pdf whether those qualities should
be turned on. Should there be a fill, or not? Should there be a stroke, or not? That is why the argument is
Boolean - "yes" or "no" (though "1" or "0" are also allowed).

The fill and stroke tags do a different job. The only argument that these tags are allowed is a color. If there
are no fill or stroke tags in a document, both the fill and the stroke for all shapes default to black. If you
have a fill tag before a shape, it allows you to change the color that that shape is filled with. Similarly, a
stroke tag before a shape allows you to set the color that the outline of that shape will be drawn in. If there is
no fill or stroke tag in front of a shape, it will be filled and stroked with the most recently defined fill or
stroke - or failing that, the default black.

This means that you can use one fill tag to refer to many shapes, while changing the stroke for each of
them. Or vice versa.

Another brief example of how the fill and stroke tags look:

<fill color="olivedrab"/>

<stroke color="khaki"/>

4.3. Lines and lineMode

The other basic drawing element is the line. To draw a simple line, you use the <lines> tag. For each line you
want to draw, you pass <lines> two pairs of X-Y co-ordinates - one pair of co-ordinates for the start point of

RML User Guide Document generated on 2025/07/04 20:17:34

Page 20

the line, the other for the end point.

If you want to draw more than one line, you can keep passing <lines> more sets of 4 co-ordinates. <lines>
then draws those other separate lines on the page. The lines in a <lines> command are just lumped together in
one <lines> tag for your convenience. (If you want lines that follow on from each other, look at the "Ad-
vanced figures" section later in this manual).

For example, this draws a simple line:

<lines>

 2.5in 10.5in 3.5in 10.5in

</lines>

And this starts with the same line, then draws an extra couple of lines below it:

<lines>

 2.5in 10.5in 3.5in 10.5in

 2.5in 10.25in 3.5in 10.25in

 2.5in 10in 3.5in 10in

</lines>

It doesn't matter how you arrange the sets of co-ordinates, but it helps to keep it human-readable if you keep co-
ordinates to do with the same line on the same line of RML. This second example could have been written like
this (but it would be much harder to follow):

<lines>

 2.5in 10.5in 3.5in 10.5in 2.5in 10.25in 3.5in 10.25in 2.5in 10in 3.5in 10in

</lines>

One more thing to notice before we move on is that these co-ordinates are separated by spaces. They are not sep-
arated by commas as you might expect.

As well as just drawing lines, there are a number of attributes you can modify to change the appearance of lines.
This is done with the <lineMode> tag.

The most obvious attribute to <lineMode> is width. You can give <lineMode> a number for the width at-
tribute to change the line width to that number of points.

Figure 4: Example of lineMode attribute "width"

The join attribute to <lineMode> adjusts how what happens when lines meet. They can either come to a
point, or the vertex can be rounded or squared off into a bevelled join. The possible values for join are round,
mitered, or bevelled.

The cap attribute to <lineMode> adjusts how the ends of lines appear. The end of a line can have a square
end exactly at the vertex, a square end that is extended so it is over the vertex, or a half circle - a rounded cap.
These possible values for cap are default, square or round.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 21

Figure 5: Example of lineMode attribute "cap"

Both the join and cap attributes for <lineMode> are only really visible if the line you are applying them to
is thick.

Another attribute to <lineMode> is dash. This allows you to specify if the line is dotted or dashed. You sup-
ply it a series of numbers (separated by commas), and it takes them as a pattern for how many pixels the line is
on for, and then how many pixels the line is off (i.e. not displayed) for. This can be a simple pattern such as "1,2"
(which gives you a plain dotted line) or "5,5" (which makes the lines sections equal with the spaces), or as com-
plex as "1,1,3,3,1,4,4,1" (a complex pattern of dots and dashes).

Figure 6: Example of lineMode attribute "dash"

The following example shows examples of most of the attributes that you can use with <lines> and
<lineMode>. Notice how you can use more that one attribute to <lineMode> at the same time.

EXAMPLE 4

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>
<!DOCTYPE document SYSTEM "../rml.dtd">
<document filename="example_4.pdf">

<template>
 <pageTemplate id="main">
 <pageGraphics>

 <fill color="red"/>

 <setFont name="Helvetica" size="24"/>
 <drawCentredString x="297.5" y="800">Lines in RML.</drawCentredString>

 <!-- notice that each of these "empty" tags are teminated with a slash -->
 <lineMode width="1"/>
 <lines>1in 10.5in 2in 10.5in
 2in 10.5in 1.5in 10in
 1.5in 10in 1.5in 10.75in
 </lines>
 <fill color="black"/>
 <setFont name="Helvetica" size="9"/>
 <drawCentredString x="1.5 in" y="9.75 in">width = 1</drawCentredString>

 <lineMode width="5"/>
 <lines>2.5in 10.5in 3.5in 10.5in
 3.5in 10.5in 3in 10in
 3in 10in 3in 10.75in
 </lines>
 <drawCentredString x="3 in" y="9.75 in">width = 5</drawCentredString>

 <lineMode width="10"/>
 <lines>4in 10.5in 5in 10.5in
 5in 10.5in 4.5in 10in
 4.5in 10in 4.5in 10.75in
 </lines>
 <drawCentredString x="4.5 in" y="9.75 in">width = 10</drawCentredString>

 <lineMode width="15"/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 22

 <lines>5.5in 10.5in 6.5in 10.5in
 6.5in 10.5in 6in 10in
 6in 10in 6in 10.75in
 </lines>
 <drawCentredString x="6 in" y="9.75 in">width = 15</drawCentredString>

 <!-- examples for the 'join' attribute to 'LineMode' -->
 <lineMode width="5"/>
 <lines>1in 9in 2in 9in
 2in 9in 1.5in 8.5in
 1.5in 8.5in 1.5in 9.25in
 </lines>
 <fill color="black"/>
 <setFont name="Helvetica" size="9"/>
 <drawCentredString x="1.5 in" y="8.25 in">width=10</drawCentredString>

 <!-- options for 'join' are "round", "mitered", or "bevelled" -->

 <lineMode width="5" join="round"/>
 <lines>2.5in 9in 3.5in 9in
 3.5in 9in 3in 8.5in
 3in 8.5in 3in 9.25in
 </lines>
 <drawCentredString x="3 in" y="8.25 in">width=5, join=round</drawCentredString>

 <lineMode width="5" join="mitered"/>
 <lines>4in 9in 5in 9in
 5in 9in 4.5in 8.5in
 4.5in 8.5in 4.5in 9.25in
 </lines>
 <drawCentredString x="4.5 in" y="8.25 in">width=5, join=mitered</drawCentredString>

 <lineMode width="5" join="bevelled"/>
 <lines>5.5in 9in 6.5in 9in
 6.5in 9in 6in 8.5in
 6in 8.5in 6in 9.25in
 </lines>
 <drawCentredString x="6 in" y="8.25 in">width=5, join=bevelled</drawCentredString>

 <!-- examples for the 'cap' attribute to 'LineMode' -->
 <lineMode width="10"/>
 <lines>1in 7.5in 2in 7.5in
 2in 7.5in 1.5in 7in
 1.5in 7in 1.5in 7.75in
 </lines>
 <fill color="black"/>
 <setFont name="Helvetica" size="9"/>
 <drawCentredString x="1.5 in" y="6.75 in">width=10</drawCentredString>

 <!-- options for 'cap' are "default", "round", or "square" -->

 <lineMode width="10" cap="default"/>
 <lines>2.5in 7.5in 3.5in 7.5in
 3.5in 7.5in 3in 7in
 3in 7in 3in 7.75in
 </lines>
 <drawCentredString x="3 in" y="6.75 in">width=10, cap=default</drawCentredString>

 <lineMode width="10" cap="round"/>
 <lines>4in 7.5in 5in 7.5in
 5in 7.5in 4.5in 7in
 4.5in 7in 4.5in 7.75in
 </lines>
 <drawCentredString x="4.5 in" y="6.75 in">width=10, cap=round</drawCentredString>

 <lineMode width="10" cap="square"/>
 <lines>5.5in 7.5in 6.5in 7.5in
 6.5in 7.5in 6in 7in
 6in 7in 6in 7.75in
 </lines>
 <drawCentredString x="6 in" y="6.75 in">width=10, cap=square</drawCentredString>

 <lineMode width="5" cap="default"/>
 <!-- examples for the 'miterLimit' attribute to 'LineMode' -->
 <lineMode width="5" join="mitered"/>
 <lines>1in 6in 2in 6in
 2in 6in 1.5in 5.5in
 1.5in 5.5in 1.5in 6.25in
 </lines>
 <fill color="black"/>
 <setFont name="Helvetica" size="9"/>
 <drawCentredString x="1.5 in" y="5.25 in">width=5, join=mitered</drawCentredString>

 <lineMode width="5" join="mitered" miterLimit="10"/>
 <lines>2.5in 6in 3.5in 6in
 3.5in 6in 3in 5.5in
 3in 5.5in 3in 6.25in
 </lines>
 <drawCentredString x="3 in" y="5.25 in">width=5, join=mitered</drawCentredString>
 <drawCentredString x="3 in" y="5.1 in">miterLimit=10</drawCentredString>

 <lineMode width="10" join="mitered"/>
 <lines>4in 6in 5in 6in

RML User Guide Document generated on 2025/07/04 20:17:34

Page 23

 5in 6in 4.5in 5.5in
 4.5in 5.5in 4.5in 6.25in
 </lines>
 <drawCentredString x="4.5 in" y="5.25 in">width=10, join=mitered</drawCentredString>

 <lineMode width="10" join="mitered" miterLimit="20"/>
 <lines>5.5in 6in 6.5in 6in
 6.5in 6in 6in 5.5in
 6in 5.5in 6in 6.25in
 </lines>
 <drawCentredString x="6 in" y="5.25 in">width=10, join=mitered</drawCentredString>
 <drawCentredString x="6 in" y="5.1 in">miterLimit=20</drawCentredString>

 <!-- examples for the 'dash' attribute to 'LineMode' -->
 <lineMode width="2"/>
 <lines>1in 4.5in 2in 4.5in
 2in 4.5in 1.5in 4in
 1.5in 4in 1.5in 4.75in
 </lines>
 <fill color="black"/>
 <setFont name="Helvetica" size="9"/>
 <drawCentredString x="1.5 in" y="3.75 in">width=2</drawCentredString>

 <!-- options for 'dash' are sequences of numbers -->

 <lineMode width="2" dash="5,5"/>
 <lines>2.5in 4.5in 3.5in 4.5in
 3.5in 4.5in 3in 4in
 3in 4in 3in 4.75in
 </lines>
 <drawCentredString x="3 in" y="3.75 in">width=2, dash=5,5</drawCentredString>

 <lineMode width="2" dash="2,10"/>
 <lines>4in 4.5in 5in 4.5in
 5in 4.5in 4.5in 4in
 4.5in 4in 4.5in 4.75in
 </lines>
 <drawCentredString x="4.5 in" y="3.75 in">width=2, dash=2,10</drawCentredString>

 <lineMode width="2" dash="5,5,2,10"/>
 <lines>5.5in 4.5in 6.5in 4.5in
 6.5in 4.5in 6in 4in
 6in 4in 6in 4.75in
 </lines>
 <drawCentredString x="6 in" y="3.75 in">width=2, dash=5,5,2,10</drawCentredString>

 </pageGraphics>
 <frame id="first" x1="72" y1="72" width="451" height="698"/>
 </pageTemplate>
</template>

<stylesheet>
</stylesheet>

<story>
<para></para>
</story>

</document>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 24

Figure 7: Output from EXAMPLE 4

RML User Guide Document generated on 2025/07/04 20:17:34

Page 25

5. Graphics vs Flowables
Both the basic graphical figures and the basic text operations we have seen so far share some properties. All of
them require you to specifically position them at a certain point on a page (or inside a frame) using co-ordinates.

In RML, operations which position elements explicitly on the page using X-Y co-ordinates and other geometric
parameters are called "graphics operations" (or just "graphics"). The other major group of tags in RML are the
"flowables".

Flowables (like paragraphs, spacers, and tables) can appear in a story (or in the <place> tag). Graphics ap-
pear in <pageGraphics> and <illustration>. These two categories cannot be mixed: flowables are po-
sitioned in sequence running down a frame until the frame has no more room and then placed on the next frame
(on the next page if necessary); graphics are explicitly positioned by co-ordinates.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 26

6. More about pages and page structures

6.1. More about template and pageTemplate

We have already seen that the <template> has to appear at the start of an RML document (after the prolog).
This section sets out to explain it more fully.

A <template> is the section where the layout of a document is set out - both for the whole document and for
individual pages within it.

Up to now, we have just been using <template> without any options. But the <template> tag has a num-
ber of optional attributes that you can use to set settings for the whole document:

pageSize sets the size of the page. This takes a pair of numbers for the width and the height of the page. If you
don't give it any numbers, it defaults to A4 (the international standard page size which differs from the American
standard page size of letter, but is a standard in other places such as the UK). While this is a sensible default, it's
usually best to explicitly specify a size. Common sizes are (21cm, 29.7cm) or (595, 842) for A4, (8.5in, 11in) for
letter, and (8.5in, 17in) for legal.

rotation sets the angular orientation of the page. This is a float or integer number that should be a multiple of
90. The default value is zero.

leftMargin and rightMargin set the horizontal margins for the page. topMargin and bottomMargin
set the vertical margins for the page.

You can also set the title of the document with the title attribute (which defaults to '(untitled)') and the author
with the author attribute (which defaults to '(unauthored)').

There are also the optional showBoundary and allowSplitting attributes, which can both be set to "0" or
"1" (or "true" and "false"). The showBoundary attribute is off by default, but when it is set to true, it shows
a black border around any frames on the page.

<template> allows you to set options for the whole document. The <pageTemplate> tag allows you to set
options for individual pages. You can have more than one <pageTemplate> inside the template section. This
allows you to have different pageTemplates for each page that requires a different structure. For example,
the title page of a report could have a number of graphics on it while the rest of the pages are more text-orient-
ated.

Each <pageTemplate> tag must have the mandatory attribute id. This gives the template a name, and allows
both rml2pdf and you to refer to it by name.

The <pageTemplate> tag also allows you to override the rotation and pageSize set by the <template>
tag.

As well as these attributes, you can put any number of <pageGraphics> into a <pageTemplate>
(<pageGraphics> are the containers for the <drawString> and shape-drawing commands we saw earli-
er).

In practice, you may have two <pageGraphics> sections inside a <pageTemplate>. The way this is inter-
perted by RML2PDF is that the first one is carried out before the contents of the story for that page, and the
second one is carried out after the story. This may be of use when you need some elements to overlap others, and
particularly useful when you are using the <includePdfPages> tag. IncludePdfPages places a number of
pages imported from another PDF file into your document, placing them over the content you already have (in-
cluding any header and footers you have designed). This may mean it obscures headers, footers or something
else you need on very page. The way around this is to place your headers and footers in a second pageGraphics
section, which ensures that it will appear over anything in your story. Provided you have sensibly defined frames
it won't appear over the main content of your page, but it will appear over the top of your included PDFs allow-

RML User Guide Document generated on 2025/07/04 20:17:34

Page 27

ing you to have the same look-and-feel for these pages as you do for the rest of your document.

(See section 8.8 ("Integrating with PageCatcher: catchForms, doForm and includePdfPages") for more info on
the <includePdfPages> tag.)

6.2. Frame and nextFrame

As well as containing <pageGraphics>, each <pageTemplate> can also contain frames. These frames
can split the page into more than one region. For each frame in a <pageTemplate>, you must supply an id,
the X and Y co-ordinates of the bottom left hand corner, as well as the width and height of the frame. You
can have one frame in a page, or use two or more to split it into a multi-column layout. Frames really come into
their own when you use paragraphs and flowables (see the section on "Advanced text" below).

This is how it looks in practice:

<frame id="main" x1="4in" y1="2in" width="3in" height="7in"/>

(When you are using text in <para></para> tags, you can use the <nextFrame/> tag to force it into the
next frame on the page. Look at the section on "Advanced text" later in this document for more details on this).
An additional attribute overlapAttachedSpace can be set to 0 or 1 to force the frame to overlap space that
is implicitly attached to flowables by their styles. See section 6.5 on styles. The default value for this attribute is
set using the site wide configuration for reportlab (in reportlab/rl_config.py).

6.3. condPageBreak: conditional page breaks

The <condPageBreak/> is a "CONDitional Page Break". To use it, you give it a height in any units that
RML can handle. It then compares this height with the remaining available space on a page. If the space is suffi-
cient, then the next elements are placed on the current page, but if there is less space than the height you have
given it anything following the <condPageBreak/> tag is continued on the next page.

That is what happens on pages with only one frame. On pages that have multiple frames, this tag acts as a
conditional frame break. If the space in the current frame isn't enough, it will break and place what follows in the
next frame rather than on the next page. The tag and its syntax still remain the same.

This tag is particularly useful with large tables, where you want the whole table to be presented on one page
rather than split between two. It can also be used where you have a collection of images, and you want them all
to be on the same page.

<condPageBreak/> has only one attribute - the mandatory one of height.

Examples:

<condPageBreak height="1in"/>

<condPageBreak height="72"/>

6.4. storyPlace: out of band flowables

The <storyPlace> container is a "flowable story that's placed". This allows for dynamically specified frames
to be constructed in the story. This tag is like having an <illustration> & <place> combination although
you cannot separate an illustration from its frame as you can with <storyPlace>.

<storyPlace> takes 4 required attributes and one optional one. x, and y are the x and y co-ordinates for
where you want the flowables placed. width and height are the width and height of the flowable. Finally the
origin can be one of page|frame|local. If not specified local is assumed. The origin attribute spe-

RML User Guide Document generated on 2025/07/04 20:17:34

Page 28

cifies where the x and y attributes are based.

Examples:

<storyPlace x="0" y="0" width="18cm" height="1cm" origin="page">

 <para>This is right at the bottom of the page</para>

</storyPlace>

<storyPlace x="0" y="0" width="18cm" height="1cm" origin="frame">

 <para>This is right at the bottom of the current frame</para>

</storyPlace>

<storyPlace x="0" y="0" width="18cm" height="1cm" origin="local">

 <para>This is right at the current frame position!</para>

</storyPlace>

6.5. pto: Please Turn Over Control

The <pto> tag is a flowable container that holds an arbitrary number of other flowables. The first two may be
special <pto_trailer> or <pto_header> tags each of which may contain arbitrary flowables. The idea is
that the trailer flowables are issued at the bottom of the page whenever the main container flowables split; the
header flowables appear at the top of the next frame.

<pto>

 <pto_trailer>

 <para textColor="blue" style="pto">

 See you on next frame

 </para>

 </pto_trailer>

 <pto_header>

 <para textColor="blue" style="pto">

 back from the previous frame

 </para>

 </pto_header>

 <para style="h1">A header</para>

 <para style="bt">

 Many vast star fields in the plane of our Milky Way Galaxy

 are rich in clouds of dust, and gas. First and foremost,

 visible in the above picture are millions of stars, many

 of which are similar to our Sun. Next huge filaments of

 dark interstellar dust run across the image and block the

 light from millions of more stars yet further across our Galaxy.

 </para>

</pto>

6.6. keepInFrame fixed space control

The <keepInFrame> tag is a flowable container that holds an arbitrary number of other flowables. The inten-
tion is that the container controls the space allocated to the inner flowables. Errors will be caused by attempts to
use <nextFrame/> and similar tags inside the <keepInFrame> container.

The <keepInFrame> tag takes several attributes. maxWidth is the maximum width. If zero then the avail-
able width will be used. maxHeight is the maximum height. If zero then the available height will be used.
frame if specified this should be the name or index of the frame in which the contents should be drawn. The
framechange takse place before widths etc are evaluated. mergeSpace if 1 then adjacent pre and post space for
the content elements will be merged. onOverflow this specifies the action to be taken if the contents is too
large. Allowed values are error ie raise an error, overflow just scrawl all over the page, shrink shrink the
contents to fit the allowed space, & overflow truncate the contents at the borders of the allowed space.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 29

The example below shows how to cram star fields into a one inch square.

<keepInFrame maxWidth="72" maxHeight="72">

 <para style="h1">A header</para>

 <para style="bt">

 Many vast star fields in the plane of our Milky Way Galaxy

 are rich in clouds of dust, and gas. First and foremost,

 visible in the above picture are millions of stars, many

 of which are similar to our Sun. Next huge filaments of

 dark interstellar dust run across the image and block the

 light from millions of more stars yet further across our Galaxy.

 </para>

</keepInFrame>

6.7. imageAndFlowables tag

The <imageAndFlowables> tag allows flowables to flow around an image. Errors will be caused by at-
tempts to use <nextFrame/> and similar tags inside the <imageAndFlowables> container.

The <imageAndFlowables> tag takes several attributes. imageName the name of the image file or path.
imageWidth the width of the image; using 0 will cause the pixel size in points to be used. imageHeight the
height of the image; using 0 will cause the pixel size in points to be used. imageMask a transparency colour or
the word "auto"; this only works for image types that support transparency. imageLeftPadding space to be
used on the left of the image. imageRightPadding space to be used on the right of the image. imageTop-
Padding space to be used on the top of the image. imageBottomPadding space to be used on the bottom
of the image. imageSide which side the image should go on; "left" or "right".

Example:

<imageAndFlowables imageName="../doc/images/replogo.gif"

 imageWidth="141" imageHeight="90" imageSide="left">

 <para style="h1">Test imageAndFlowables tag with paras</para>

 <para style="style1">

 We should have an image on the right

 side of the paragraphs here.

 </para>

 <para style="style1">

 Summarizing, then, we assume that the fundamental error of regarding

 functional notions as categorial may remedy and, at the same time,

 eliminate the levels of acceptability from fairly high (e.g. (99a)) to

 virtual gibberish (e.g. (98d)). This suggests that the theory of

 syntactic features developed earlier delimits a descriptive fact. We

 have already seen that any associated supporting element is not quite

 equivalent to the traditional practice of grammarians. From C1, it

 follows that the theory of syntactic features developed earlier can be

 defined in such a way as to impose irrelevant intervening contexts in

 selectional rules. So far, a descriptively adequate grammar is rather

 different from a general convention regarding the forms of the grammar.

 </para>

</imageAndFlowables>

6.8. More about stylesheets

Just like in a word processor, RML allows you to define a stylesheet at the start of your document, and then ap-
ply it to paragraphs later on. This means that you can define a complicated mixture of settings that you want to
apply to paragraphs, only define it in one place, and refer to it with a simple name at the start of each paragraph

RML User Guide Document generated on 2025/07/04 20:17:34

Page 30

rather than having to type or cut-and-paste large blocks of text over and over for each paragraph.

Each stylesheet starts with the <stylesheet> tag. There may then be an optional initialisation section where
aliases can be set (bounded by the pair of tags <initialize></initialize>). After that come a number
of <paraStyle> tags - each one defining a style that you want to use for paragraphs. The <paraStyle> tag
must have an attribute name, and then may have as many optional attributes as you want, each one setting one
feature of the appearance of a paragraph.

Each one of these <paraStyle> tags is an empty element (i.e. it is closed with a "/>" rather than a separate
closing tag), but you might want to indent the tag so that each of the options is on a separate line. This makes it
easier to see what each style is defining (see the example below for how this looks).

One attribute for <paraStyle> that isn't the same as those used by <para> is the parent attribute. Once
you have defined a style using a <paraStyle> tag, you can use those settings as a basis for other styles. par-
ent allows one style to inherit from another.

The other attribute that isn't shared by the <para> tag is backColor. As you can probably guess, this attrib-
ute sets a background color for the paragraph it is describing.

The following optional attributes for <paraStyle> are the same as those for the <para> tag - you can find
more description of them in the "Advanced text" section below:
fontName, fontSize, leading, leftIndent, rightIndent, firstLineIndent,
alignment, spaceBefore, spaceAfter, bulletFontName, bulletFontSize, bullet-
Indent, textColor.

Here is an example of how the <stylesheet> tag might look in use:

<stylesheet>

 <initialize>

 <alias id="style.normal" value="style.Normal"/>

 </initialize>

 <paraStyle name="h1"

 fontName="Courier-Bold"

 fontSize="12"

 spaceBefore="0.5 cm"

 />

 <paraStyle name="style1"

 fontName="Courier"

 fontSize="10"

 />

 <paraStyle name="style2"

 parent="style1"

 leftIndent="1in"

 />

 <paraStyle name="style7"

 parent="style1"

 leading="15"

 leftIndent="1in"

 rightIndent="1in"

 />

</stylesheet>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 31

stylesheets also allow you to define styles for other tags - you can define styles for blockTables with the
<blockTableStyle> tag, or the various form creation elements (checkBoxes, letterBoxes and text-
Boxes) with the boxStyle tag. Refer to the sections on blockTables and Form Field Tags later in this doc-
ument for details on how to use these.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 32

7. Advanced text

7.1. Title

The <title> tag sets the title for a document, or a section of a document, and displays it on the page. By de-
fault, this is set in a larger typeface than the body text (in a similar way that headers are). You can change the
way a title is set by setting a style called style.Title (in the stylesheet section of your document).

[Note: This tag does not affect what is displayed in the "title bar" at the top of a document.]

Example:

<stylesheet>

 <paraStyle name="style.Title"

 fontName="Courier-Bold"

 fontSize="36"

 leading="44"

 />

</stylesheet>

<story>

 <title>This is the Title</title>

 <para>

 And it should be set in 36 pt Courier Bold.

 </para>

</story>

7.2. Headings -- h1, h2, h3

Headings are also handled in the same way as in HTML. The most important heading level has its text enclosed
by <h1> and </h1> tags, and less important sub-headings use the <h2></h2> and <h3></h3> tags in the
same way.

7.3. Paragraphs and paragraph styles

As well as explicitly placing a piece of text into a certain position on a page using the drawString commands,
RML also allows you to use paragraphs of text. Paragraphs are flowables. This means that you don't need to tell
RML exactly where every line is going to go on the page - you let rml2pdf worry about that.

To do this you place your text inside the story section of an RML document, and use the <para> and
</para> tags to tell the parser where each paragraph starts and ends.

As well as delineating where paragraphs begin and end, the <para> tag can also have a number of optional at-
tributes:

style:
If you have set up a style in the stylesheet section of a document, you can refer to them by name by using the
style attribute. For example, if you have defined a style called Normal, you can have your paragraph appear
in that style by using <para style="Normal">.

alignment:
How the text is aligned within the paragraph. It can be LEFT, RIGHT, CENTER (or CENTRE) or JUSTIFY.

fontName, fontSize:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 33

fontName and fontSize set the name and size of the font that you want this paragraph displayed in. (This
can often be better done using the <paraStyle> tag inside a <stylesheet>, and then using the <style>
tag to apply it to that paragraph). Example: <para fontName="Helvetica" fontSize="12">

leading:
leading is used is used to alter the space between lines. In RML, it is expressed as the height of a line PLUS
the space between lines. So if you are using 10 point font, a leading of 15 will give you a space between lines of
5 points. If you use a number that is smaller than the size of font you are using, the lines will overlap.

leftIndent, rightIndent:
leftIndent and rightIndent apply space to the left or right of a paragraph which is in addition to any
margin you have set.

firstLineIndent:
firstLineIndent is used when you want your paragraph to have an additional indent on the first line - on
top of anything set with leftIndent.

spaceBefore, spaceAfter:
spaceBefore and spaceAfter, as you would expect, set the spacing before a paragraph or after it.

textColor:
This sets the color to be used in displaying a paragraph.

bulletText, bulletColor, bulletFontName, bulletFontSize, bulletIndent:
These are all used to set the characteristics for any bullets to be used in the paragraph.

Inside the story, you can also do a number of things that you can't do with the drawString commands. For a
start, you can use bold, italics and underlining. If you are familiar with HTML, you will recognize these tags -
<i> and </i> start and stop italics, and start and stop the text being set as bold, and <u> and </u>
start and stop underlining.

7.4. The font tag

You can also explicitly set the font using the tag. This has the optional attributes of face, color, and
size which are all pretty self-explanatory. You need to use a tag to close this before the end of the
paragraph. Example:

This is courier in crimson!

That example produces this line of text:
This is courier in crimson!

7.5. Superscripts and subscripts

Another thing you can do inside the story is using superscripts and subscripts. You do this with the
<super></super> and tags. (Superscript is where the text is raised up on the line such as in
the mathematical symbol for squared or cubed, and subscript is where it is lowered relative to the rest of the line
in the same way). The <super> tag can also be called <sup>. Thses tags have optional attributes rise to set the
baseline shift (negatively for <sub>) and size which sets the font size to use in the tag. The default rise is 50% of
the font size and the default size is the existing font size - min(2,20% of existing font size). Example:

<para>

 _{This is subscript.}

 This is normal text.

 <super>This is superscript.</super>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 34

</para>

That example produces this:

This is subscript.
 This is normal text. This is superscript.

whereas this example:

<para>

 _{This is subscript.}

 This is normal text.

 <super size="6" rise="5">This is superscript.</super>

</para>

produces this:

This is subscript.
 This is normal text. This is superscript.

7.6. Lists

RML supports ordered and unordered lists, using the tags and . They work in a similar way to
their HTML equivalents. A list item can be any normal flowable element but there can be only one such item
within a pair of list item tags. Lists can be nested.

WARNING: The contents of a list are flowable objects, and the list itself does not know what font sizes or spa-
cing you will use in the enclosed paragraphs. Therefore, if you want to get normal typography, it's very import-
ant to define a <listStyle> with font names, size and spacing matching that of the <paraStyle> you use for the en-
closed text.

You should also be aware that RML's <para> tag already has a flexible feature named the `bullet` which can
provide bulleted, numbered and definition lists which match the corresponding text. In general lists should only
be used when you are transforming in a mapping from HTML, or when you need to place arbitrary flowables
such as tables or images in the body of a list.

Lists and list items can be styled using tag attributes or with <listStyle> tags in the stylesheet section. See the
rml.dtd for the full list of attributes on the and tags using LIST_MAIN_ATTRS.

In ordered lists, you can use the following types of enumeration in the bulletType or start attributes:

'I': Roman numerals (capitals)
'i': Roman numerals (lower case)
'1': Arabic numerals
'A': Capital letters
'a': Lowercase letters

For unordered lists, bulletType must be set to 'bullet'

Unordered lists can use bullet types of the following shapes by setting the 'start' attribute in or the 'value' at-
tribute in tags:

bulletchar
square
disc
diamond
diamondwx
circle

RML User Guide Document generated on 2025/07/04 20:17:34

Page 35

blackstar
squarers
arrowhead

Alternatively any non-whitespace character can be used as a bullet.

As a final possibility blank separated strings of the possible starts can be used to indicated that automatic depth
changes should be attempted.

The size, colour and position (indenting, space before/after etc.) of bullets and enumerations can be adjusted
with the relevant tag attributes. List item attributes override the attributes on or tags.

Definition lists are not yet implemented.

A simple example of nested ordered/unordered lists:

<story>

 <ol bulletColor="red" bulletFontName="Times-Roman">

 <li bulletColor="blue" bulletFontName="Helvetica">

 <para>

 Welcome to RML 1

 </para>

 <ul bulletColor="red" bulletFontName="Times-Roman" bulletFontSize="5" rightIndent="10">

 <li bulletColor="blue" bulletFontName="Helvetica">

 <para>

 unordered 1

 </para>

 <para>

 unordered 2

 </para>

</story>

For more examples of how to use lists see 'test_046_lists.rml' in '/rlextra/rml2pdf/test/'.

7.7. Using multiple frames

If you have split your page into more than one frame, you can flow text between frames. To do this you use the
<nextFrame/> tag. This is an "empty" or "singleton" tag - it doesn't take any content. Put in
<nextFrame/> and your text will continue into the next frame. It should appear outside your paragraphs -
between one </para> and the next <para> tag. An optional name attribute can be used to specify the name
or index of the frame which you wish to switch to.

You can control the automatic switch of frames by using the <setNextFrame/> tag. The required name at-
tribute can be used to specify the name or index of the frame which you wish to switch to. The
<setNextFrame/> tag is an "empty" or "singleton" tag - it doesn't take any content. Put in
<setNextFrame name="F5"/> and your text will flow into the frame specified. It should appear outside
your paragraphs - between one </para> and the next <para> tag.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 36

If you have defined more than one kind of template (by using <pageTemplate> in the template section at the
head of the RML document), you can also force RML into using a new template for the next page. You do this
by using the <setNextTemplate> tag. This tag has only one attribute - the mandatory one of name, which
tells RML which template it should use.

In practice, you would usually set the next template and then use a nextFrame:

<setNextTemplate name="yetAnotherTemplate"/>

<nextFrame/>

7.8. Preformated text -- pre and xpre

One tag that is also a flowable, but that can't be used inside the <para></para> tags is <pre>. Just as in
HTML, the <pre> tag denotes pre-formatted text. It displays text exactly as you typed it, with the line breaks
exactly where you put them and no line-wrapping. If you want to keep any formatting in your text (such as tabs
and extra whitespace), enclose it in <pre> tags rather than <para> tags.

You can also pass a style to the <pre> tag. If you don't use the optional style attribute, anything between the
<pre> tag and the </pre> tag will appear in the default style for pre-formatted text. This uses a fixed width
"typewriter" font (such as courier), and is useful for things such as program listings, but may not be what you
want for your quotation or whatever. If you have already defined a style (in the stylesheet section of your
RML document), then you can make the <pre> tag use this for your pre-formatted text.

Example:

<xpre style="myStyle">

 this is pre-formatted text.

</xpre>

The xpre is similar to the pre tag in that it preserves line breaks where they are placed in the text, but xpre
also permits paragraph annotations such as bold face and italics and font changes. For example, the following
mark-up

<xpre>
this is an <i>xpre</i> example
including red text!
</xpre>

generates the following text

this is an xpre example
including red text!

7.9. Greek letters

The <greek> tag is used for producing Greek letters in RML. This is of most use for equations and formulae.

Example:

In physics, Planck's formula for black body radiation can be expressed as:

Rλ=(c/4) (8π/λ4) [(hc/λ) 1/ehc/λkT-1]

In RML, this is expressed as:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 37

R<greek>l</greek>=(c/4) (8<greek>p</greek>/<greek>l</greek><super>4</super>)

[(hc/<greek>l</greek>) 1/e<super>hc/<greek>l</greek>kT</super>-1]

For a table of the Greek letters used by the <greek> tag and their representations in RML, look in Appendix C
at the end of this manual.

This next example show features from several of the commands describes in the previous sections; such as the
use of frames, the options to the template tag, stylesheets, and so on. See the next section for informa-
tion on using the <name> and <getName> tags.

EXAMPLE 5

EXAMPLE 4

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>
<!DOCTYPE document SYSTEM "../rml.dtd">
<document filename="example_5.pdf">

<template pageSize="(21cm, 29.7cm)"
 leftMargin="2.5cm"
 rightMargin="2.5cm"
 topMargin="2.5cm"
 bottomMargin="2.5cm"
 title="Example 5 - templates and pageTemplates"
 author="Reportlab Inc (Documentation Team)"
 showBoundary = "1"
 allowSplitting = "20"
 >
 <!-- showBoundary means that we will be able to see the limits of frames -->

 <pageTemplate id="main">
 <pageGraphics>
 </pageGraphics>
 <frame id="titleBox" x1="2.5cm" y1="27.7cm" width="16cm" height="1cm"/>
 <frame id="columnOne" x1="2.5cm" y1="2.5cm" width="7.5cm" height="24.7cm"/>
 <frame id="columnTwo" x1="11cm" y1="2.5cm" width="7.5cm" height="24.7cm"/>
 </pageTemplate>
</template>

<stylesheet>
 <initialize>
 <name id="FileTitle" value="Example 5 - templates and pageTemplates"/>
 <name id="ColumnOneHeader" value="This is Column One"/>
 <name id="ColumnTwoHeader" value="This is Column Two"/>
 </initialize>

 <paraStyle name="titleBox"
 fontName="Helvetica-Bold"
 fontSize="18"
 spaceBefore = "0.4 cm"
 alignment = "CENTER"
 />

 <paraStyle name="body"
 fontName="Helvetica"
 fontSize="10"
 leftIndent = "5"
 spaceAfter = "5"
 />

</stylesheet>

<story>
 <para style = "titleBox">
 <getName id="FileTitle"/>
 </para>

 <nextFrame/>

 <h2>
 <getName id="ColumnOneHeader"/>
 </h2>

 <para>
 This is the contents for column one.

 </para>
 <para>
 It uses the default style for paragraph.
 </para>
 <para>
 Does it come out OK?
 </para>
 <para>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 38

 There now follows some random text to see how these paragraphs look with longer content:
 </para>
 <para>
 Blah blah morale blah benchmark blah blah blah blah blah blah communication blah
 blah blah blah blah blah blah blah blah blah stretch the envelope blah blah blah.
 Blah blah quality vector blah blah blah blah blah gap analysis blah blah blah.
 Blah blah blah blah blah implement blah blah blah blah blah blah blah synergize
 blah blah blah blah phase blah blah blah blah blah blah blah. Blah blah blah
 blah world class blah blah blah blah blah experiencing slippage blah blah blah
 blah blah networking communication. Blah blah blah blah blah blah blah blah blah
 blah blah blah blah blah blah.
 </para>
 <para>
 Blah blah blah blah blah blah blah blah blah blah blah blah architect blah inter
 active backward-compatible blah blah blah blah blah. Blah blah blah blah value-a
 dded blah go the extra mile blah blah solutioning recognition blah phase blah cr
 edibility. Blah networking blah blah blah blah market segment blah blah blah har
 dball blah networking blah blah blah blah blah implement blah blah blah.
 </para>
 <para>
 Blah blah blah blah blah blah blah blah blah re-factoring phase blah knowledge
 management blah blah. Blah blah blah blah interactive blah vision statement blah
 blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah
 blah blah blah blah blah blah blah. Blah blah blah empowering blah blah
 interactive blah empowerment blah blah blah blah blah backward-compatible blah
 downsize quality blah blah blah blah synergy blah blah blah.
 </para>
 <para>
 Blah blah blah blah blah blah conceptualize blah downsize blah blah blah blah.
 Blah blah blah blah blah blah blah blah blah blah blah blah synergy client-
 centered vision statement. Blah appropriate blah synergize regroup blah blah blah blah
 blah synergy blah blah blah blah blah blah blah blah blah vision statement down
 size goal-setting.
 </para>
 <para>
 Blah blah dysfunctional blah blah blah blah blah blah blah appropriate blah blah
 blah blah blah blah blah blah re-factoring go the extra mile blah blah blah blah.
 Blah implement blah blah blah blah streamline blah quarterly blah blah blah blah
 blah blah goal-setting blah blah blah real estate.
 </para>

 <nextFrame/>

 <h2>
 <getName id="ColumnTwoHeader"/>
 </h2>

 <para style = "body">
 This is the contents for <i>column two</i>.
 </para>
 <para style = "body">
 It uses the paragraph style we have called "body".
 </para>
 <para style = "body">
 Does it come out OK?
 </para>
 <para style = "body">
 There now follows some random text to see how these paragraphs look with longer content:
 </para>
 <para style = "body">
 Blah OS/2 blah blah blah blah coffee blah blah blah blah Windows blah blah blah
 blah blah blah blah. Blah blah blah blah blah blah blah Modula-3 blah blah blah
 blah blah blah blah blah. Blah blah bug report blah blah blah blah blah memory
 blah blah TeX TCP/IP SMTP blah blah. Blah blah blah Multics blah blah blah blah
 blah blah blah blah blah Modula-2 blah blah blah blah blah XML blah blah blah
 blah Perl blah. Blah blah blah blah blah blah format your hard drive blah blah blah
 Sun Microsystems blah blah blah.
 </para>
 <para style = "body">
 Blah blah blah blah blah Em blah letterform blah blah blah blah blah blah blah
 blah blah letterform blah blah. Blah blah blah blah leader blah blah blah blah
 frame blah blah blah. Blah blah blah blah blah Pantone[TM] ligature blah blah
 flush left blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah
 blah blah blah colour separations rule blah blah blah blah blah. Blah blah blah
 blah blah blah blah blah letterform blah blah type foundry blah blah flush-right
 blah prepress blah blah blah blah flush-right blah blah.
 </para>
 <para style = "body">
 Blah blah blah blah blah uppercase blah blah right justified blah blah blah
 flush-right blah blah blah. Blah blah blah blah blah blah spot-colour blah Em
 ligature blah blah blah Em.
 </para>
 <para style = "body">
 Blah dingbat blah blah blah blah blah blah blah blah blah blah blah blah blah
 blah blah. Blah blah blah blah blah drop-cap blah blah blah blah blah blah blah
 blah blah. Blah blah blah blah blah blah gutter right justified blah blah blah
 blah blah blah blah Pantone[TM].
 </para>
</story>

</document>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 39

Figure 8: Output from EXAMPLE 5

7.10. Asian Fonts

RML supports all of Adobe's Asian Font Packs. You can display text in Japanese, Traditional and Simplified
Chinese and Korean using two different techniques.

The most robust technique is to include the standard Asian fonts Adobe specifies for use with Acrobat Reader.
These will already be installed on the end user's machine if they have a localized copy of Acrobat Reader, or
may be downloaded in the free "Asian Font Packs" from Adobe's site. In these cases there is no need to embed
any fonts or to have any special software on the server. The first stage is to declare the fonts you need in the op-
tional 'docinit' tag at the beginning of the document as follows:

<document filename="test_015_japanese.pdf">

<docinit>

<registerCidFont faceName="HeiseiMin-W3"/>

</docinit>

<template ...>

etc.

Note: The encName attribute of registerCidFont is deprecated: you should not use it with new docu-
ments.

You may then declare paragraph styles, use string-drawing operations or blockTable fonts referring to the font
you have defined:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 40

<paraStyle name="jtext"

 fontName="HeiseiMin"

 fontSize="12"

 leading="14"

 spaceBefore="12" />

The test directory includes a file test_015_japanese.rml containing a working simplified example in Japanese.

Warning: You will need to have a number of CMap files available on your system. These are files provided by
Adobe which contain information on the encodings of all the glyphs in the font. RML2PDF looks for these in
locations defined in the CMapSearchPath variable in the file reportlab/rl_config.py, which knows
where to find Acrobat Reader on most Windows and Unix systems. If you wish to use Asian fonts on another
system, you can copy these files (which may be redistributed freely) from a machine with Acrobat Reader on to
your server.

Editor's note at 28/12/2002 - there is a great deal of information on fonts which needs adding to this manual in-
cluding embedded Type 1 fonts and encodings and use of embedded subsetted TrueType fonts

7.11. Paragraph Hyphenation

Hyphenation functionality (requires Pyphen package installed) - Pyphen is a pure Python module to hyphenate
text using included or external Hunspell hyphenation dictionaries.

Usage - Set the hyphenationLang attribute in the paraStyle and the content will be slplit according to the lan-
guage used.

You can also exclude any word or part of a sentence from hyphenation by opening and closing a nobr tag around
the content.

If the pyphen python module is installed attribute hyphenationLang controls which language will be used to hy-
phenate words without explicit embedded hyphens.

If embeddedHyphenation is set then attempts will be made to split words with embedded hyphens. Attribute uri-
WasteReduce controls how we attempt to split long uri's. It is the fraction of a line that we regard as too much
waste. The default in module reportlab.rl_settings is 0.5 which means that we will try and split a word that looks
like a uri if we would waste at least half of the line.

Currently the hyphenation and uri splitting are turned off by default. You need to modify the default settings by
using the file ~/.rl_settings or adding a module reportlab_settings.py to the python path.
Suitable values are

hyphenationLanguage='en_GB'
embeddedHyphenation=1
uriWasteReduce=0.3

More examples heretest_001_hello.rml test_001_hello.pdf

https://www.reportlab.com/examples/rml/test/test_001_hello.rml
https://www.reportlab.com/examples/rml/test/test_001_hello.pdf

RML User Guide Document generated on 2025/07/04 20:17:34

Page 41

Part II - Advanced Features

8. Miscellaneous useful features

8.1. pageNumber

As you'd expect from the name, this tag adds page numbers to your document. This has nothing tricky to remem-
ber - all you have to do is put the a <pageNumber/> tag where you want the page number to appear.

8.2. name, namedString and getName

The <name> and <namedString> tags allow you to set a variable as you would in a programming language.
You can then retrieve this to put in another place by using the <getName> tag. You can do this as many or as
few times as you need - so it is handy for things like headers and footers, or for items that you see changing
many times over the life of your document such as version or revision numbers. If you set them using a <name>
tag, you only have to revise them in one place every time they change, rather than having to plough through the
document changing them manually in each location and inevitably missing one.

<name> has three attributes: id and value are required, but type is optional.

<namedString> has five main attributes: id is required as the name of the variable. This tag is not self clos-
ing and the value to be assigned should be between <namedString> and </namedString>. The new at-
tribute may be set to "1" to indicate that the definition should happen only on the first time this variable is seen.
The discard attribute may be set to "1" to indicate that the definition should happen immediately and not at
render time and the value is discarded. The indexName attribute may be set to the name of another variable
which should be used as an index into the main variable where the value should be stored.

<getName> only has three attributes the first id is required so that it knows which name to "yank". The de-
fault attribute may be used to supply a default value (in case the variable is not yet defined). Finally the in-
dexName attribute may be used to specify an index name that is to be looked up to index into the id variable al-
lowing complex programming see https://www.reportlab.com/examples/rml/test/test_052_pagenum.rml.

In practice, it would look something like this example:

<stylesheet>

 <initialize>

 <name id="YourVariableName"

 value="Type anything you want between these quotes..."/>

 <namedString id="x">0</namedString>

 <namedString id="anothervariable" indexName="x">value of anothervariable</namedString>

 </initialize>

</stylesheet>

<story>

 <para>

 <getName id="YourVariableName"/>

 <getName id="anothervariable" indexName="x"/>

 </para>

</story>

You can also use the <name> tag inside the story of a document. In this case, as well as setting the value for the
variable, it is also displayed on the page (i.e. the name has a "textual value").

https://www.reportlab.com/examples/rml/test/test_052_pagenum.rml

RML User Guide Document generated on 2025/07/04 20:17:34

Page 42

8.3. Seq, seqReset, seqChain and SeqFormat

The "seq" in <seq>, <seqDefault> and <seqReset> stands for sequence. These tags are all used for para-
graph numbering (or indeed anything that requires numbering items in a sequence, such as list items or figures
and illustrations).

This is how they look in use:

<seq/>

<seqDefault id="myID"/>

<seqReset/> or <seqReset id="myID"/>

<seqChain order="id0 id1 id2...idn"/>

<seqFormat id="myID" value="i"/>

Each time you call <seq/>, its value is automatically incremented.

With <seqReset>, the id is an optional attribute. However, it is still best to use it to save confusion.

The <seqChain order="id0 id1 id2"/> tag is used to make multi sequence use easier. When se-
quence id0 is changed sequence id1 is reset; likewise when sequence id1 is changed sequence id2 is reset
and so on for the identifiers in the order attribute.

The tag <seqFormat id="myID" value="i"/> is used to associate a numbering format to myID. The
allowed values for the value attribute are given in the table below.

Value Meaning

1 Decimal

i Lowercase Roman

I Uppercase Roman

a Lowercase Alphabetic

A Uppercase Alphabetic

Here is an example that shows <seq/>, <seqReset> and <seqDefault> in use:

EXAMPLE 6

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>
<!DOCTYPE document SYSTEM "../rml.dtd">
<document filename="example_6.pdf">

<template>
 <pageTemplate id="main">
 <frame id="first" x1="72" y1="72" width="451" height="698"/>
 </pageTemplate>
</template>

<stylesheet>
</stylesheet>

<story>
 <h1>
 seq in seq, seqDefault and seqReset
 </h1>
 <para>copied: <seq id="spam"/>, <seq id="spam"/>, <seq id="spam"/>.
Reset<seqReset id="spam"/>. <seq id="spam"/>, <seq id="spam"/>,
<seq id="spam"/>.</para>
 <h2>
 <i>simple use of seq</i>
 </h2>
 <para>
 First seq: <seq/>
 </para>
 <para>
 Second seq: <seq/>
 </para>
 <spacer length="6"/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 43

 <para>
 <seqReset/>
 We have just done a <seqReset"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq after seqReset: <seq/>
 </para>
 <para>
 second seq after seqReset: <seq/>
 </para>
 <spacer length="6"/>
 <para>
 If you are going to use multiple seq tags, you need to use the "id" attribute.
 </para>

 <h2>
 <i>Better use of seq</i>
 </h2>
 <para>
 <seqDefault id="test"/>
 We have just done a <seqDefault id="test"/>
 </para>
 <para>
 <seqReset id="test"/>
 We have just done a <seqReset id="test"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq: <seq id="test"/>
 </para>
 <para>
 Second seq: <seq id="test"/>
 </para>
 <spacer length="6"/>
 <para>
 <seqReset id="test"/>
 We have just done a <seqReset id="test"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq after seqReset: <seq id="test"/>
 </para>
 <para>
 second seq after seqReset: <seq id="test"/>
 </para>

 <h2>
 <i>Using two seqs independently</i>
 </h2>
 <para>
 <seqReset id="testOne"/>
 We have just done a <seqReset id="testOne"/>
 </para>
 <para>
 <seqReset id="testTwo"/>
 We have just done a <seqReset id="testTwo"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq for testOne: <seq id="testOne"/>
 </para>
 <para>
 Second seq for testOne: <seq id="testOne"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq for testTwo: <seq id="testTwo"/>
 </para>
 <para>
 Second seq for testTwo: <seq id="testTwo"/>
 </para>
 <spacer length="6"/>
 <para>
 <seqReset id="testOne"/>
 We have just done a <seqReset id="testOne"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq after seqReset for testOne: <seq id="testOne"/>
 </para>
 <para>
 second seq after seqReset for testOne: <seq id="testOne"/>
 </para>
 <spacer length="6"/>
 <para>
 First seq after seqReset for testTwo: <seq id="testTwo"/>
 </para>
 <para>
 second seq after seqReset for testTwo: <seq id="testTwo"/>
 </para>
 <spacer length="15"/>
 <para>
 Notice how resetting testOne doesn't affect testTwo at all.
 </para>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 44

</story>

</document>

seq in seq, seqDefault and seqReset
copied: 1, 2, 3. Reset. 1, 2, 3.

simple use of seq
First seq: 1
Second seq: 2

We have just done a <seqReset"/>

First seq after seqReset: 1
second seq after seqReset: 2

If you are going to use multiple seq tags, you need to use the "id" attribute.

Better use of seq
We have just done a <seqDefault id="test"/>
We have just done a <seqReset id="test"/>

First seq: 1
Second seq: 2

We have just done a <seqReset id="test"/>

First seq after seqReset: 1
second seq after seqReset: 2

Using two seqs independently
We have just done a <seqReset id="testOne"/>
We have just done a <seqReset id="testTwo"/>

First seq for testOne: 1
Second seq for testOne: 2

First seq for testTwo: 1
Second seq for testTwo: 2

We have just done a <seqReset id="testOne"/>

First seq after seqReset for testOne: 1
second seq after seqReset for testOne: 2

First seq after seqReset for testTwo: 3
second seq after seqReset for testTwo: 4

Notice how resetting testOne doesn't affect testTwo at all.
Figure 9: The output from EXAMPLE 6

One more sophisticated use for using these tags is for multiple page counters. If you have a document where you
need different sections numbered separately from the main body of a document (perhaps for introductory matter
such as the contents and preface of a book), this can be done with a named seq tag.

The page counter as used by the pageNumber tag is a 'unique value' which depends on the actual physical
number of pages. If rather than using a pageNumber tag, you instead use something like <seq
id="pageCounter"/> , you have the ability to use <seqReset id="pageCounter"/> in between
sections so that each chapter has pages numbered from the start of that chapter rather than the start of the docu-
ment. If you use a different template for each chapter, this can then give you page numbers in the format "1-12"

RML User Guide Document generated on 2025/07/04 20:17:34

Page 45

rather than just "12" (where you are on page 12 of the document, which is page 12 of chapter 1).

8.4. Entities

RML User Guide Document generated on 2025/07/04 20:17:34

Page 46

In example 6, we saw our first use of entities. In RML, you can't use the characters "<", ">" or "&" inside any
display elements such as drawString or para. If you do, rml2pdf will assume that they are tags and attempt
to interpret them. Since they won't be valid RML tags, you will just end-up getting an error message along the
lines of "Error: Start tag for undeclared element <YourNonValidTag>".

To get around this, you should use "entities".

When you need to use "<", replace it with "<",
when you need to use ">;", replace it with ">",
and when you need to use "&", replace it with "& amp;".

8.5. Aliases

Aliases allow you to assign more than one name to a paragraph style.

The alias tag has two required attributes - id and value.

Example:
<alias id="alreadyDefinedStyleName" value="myNewStyleName"/>

This can be useful in a number of ways.

You can give a more descriptive name to a style. So you can define a number of paragraph styles called things
like "ItalicBold" or "DesignerOneParagraphStyleTwo" in the stylesheet for your document.
You can then assign aliases to these styles using names that describe the role they fill in your document such as
"pictureCaption", "abstract", "acknowledgement" and so on.

If at any point you decide to change the style for that kind of paragraph, you can then change it in one alias rather
than in every individual paragraph that uses that style.

8.6. CDATA -- unparsed character data

CDATA is a standard XML tag which indicates to the parser (in this case rml2pdf) to ignore anything inside the
CDATA section. It shouldn't parse it or process it in any way - just display it.

A CDATA section is started with the characters "<![CDATA[" and is closed off with the characters "]]>". It
can appear inside any flowable - though it is most useful inside a <pre> tag.

CDATA may be useful in places where you have large quantities of "<" and ">" characters that you want to dis-
play in your PDF, and that you would rather not have to convert them all to "<" and ">" entities. Quot-
ing sections of RML, XML, or HTML code is an example of a good place to use CDATA - if you needed to re-
vise the code example at a later date, you would have to convert the characters in every tag into entities. CDATA
saves you having to do this.

However, you should only use CDATA when necessary. If you are using other XML tools, they will also ignore
anything inside a CDATA section.

Example:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 47

<xpre>

 <![CDATA[

Anything could go here. <non_existant_tags/>, "&" signs.

Whatever you want. RML ignores it.

]] >

</xpre>

8.7. Plug-ins: plugInGraphic and plugInFlowable

Both plugInGraphics and plugInFlowables allow you to use objects from outside your RML docu-
ment.

plugInGraphic

A plugInGraphic identifies a function (callable) in a module which takes a canvas and a data string as argu-
ments and presumably draws something on the canvas using information in the data string.

Example:

<plugInGraphic module="mymodule" function="myfunction">data string</plugInGraphic>

when executed results in effectively the following execution sequence:

import mymodule
mymodule.myfunction(canvas, "data string")

using the current canvas object.

<PlugInGraphic> has two mandatory attributes: module and function. It is used in the
<pageGraphics> section of your document.

plugInFlowable

A plugInFlowable identifies a function (callable) in a module which takes a canvas data string as an argu-
ment and returns a flowable object :

Example:

<plugInFlowable module="mymodule" function="myfunction">data string</plugInFlowable>

when executed results in effectively the execution sequence:

import mymodule
flowable=mymodule.myfunction("data string")
story.append(flowable)

using the current canvas object.

plugInFlowable has two mandatory attributes: module and function. It is also used in the
<pageGraphics> section of your document.

8.8. Integrating with PageCatcher: catchForms, doForm and includePdfPages

You can use our product PageCatcher to capture individual pages from an external PDF file (e.g. application
forms, government forms, annual reports and so on). Extracting the required pages with PageCatcher will most

RML User Guide Document generated on 2025/07/04 20:17:34

Page 48

often be a one-off design-time step. Once PageCatcher has extracted a page, it archives it in a data file as format-
ted form data. (The default name for this file is "storage.data").

If you have full production versions of both RML2PDF and PageCatcher you can use the <catchForms> tag
to import all forms from a PageCatcher storage file for use in your RML document.

Example:
This example takes the form called PF0 (a page "caught" by PageCatcher and stored in the file storage.data) and
draws it into your document as a page backdrop.

<pageDrawing>

 <catchForms storageFile="storage.data"/>

 <doForm name="PF0"/>

</pageDrawing>

The <catchForms> tag is a drawing operation, and can occur anywhere in your RML document where a
<doForm> tag can occur. (For example, you can use a <catchForms> inside the flow of a story by using it
inside an <illustration>). The <catchForms> tag has one mandatory argument (storageFile) which
gives the name of the PageCatcher storage file to extract the form from.

One small point to remember is that if you are using multiple forms from the same data file, you only need to use
the actual <catchForms> tag once. To actually put the captured data into your document, you would use mul-
tiple instances of the <doForm> tag. Notice how this works in the example below:

<illustration width="451" height="698">

 <pageGraphics>

 <catchForms storageFile="samples.data"/>

 <doForm name="PF0"/>

 </pageGraphics>

</illustration>

<illustration width="451" height="698">

 <pageGraphics>

 <doForm name="PF1"/>

 </pageGraphics>

</illustration>

If you do use repeated <catchForms> tags to point at the same data file, you will get an error message similar
to the one below.

ValueError: redefining named object: 'FormXob.PF0'

If this is the case, find the places where you are using the second and subsequent <catchForms> tags and de-
lete them, leaving only the <doForm> tags. (Of course, this doesn't apply to any doForms which are pointing
at other data files. They would still need their own initial <catchForms> tags).

[Note: For the <catchForms> tag to work, you must have PageCatcher installed. In addition, your PageC-
atcher must be the full version with a .py or .pyc file. The *.exe version of PageCatcher will not work with
RML2PDF. If you get the error message "ImportError: catchForms tag requires the PageCatcher product
http://www.reportlab.com", then you either do not have PageCatcher installed, or have the wrong version].

The includePdfPages tag

In some circumstances, you may not know how many pages there will be in the PDF file you need to pageCatch.
This is the case which <includePdfPages> tag was designed for.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 49

<includePdfPages> is a generic flowable, which means that it can appear at any point in the story.

In its simplest form, an includePdfPages tag will look like this:

<includePdfPages filename="mypdffile.pdf"/>

This will take the PDF file called "mypdffile.pdf", use pageCatcher behind the scenes and include every page in
the PDF file in your output. There is also an optional "pages" attribute. This can have either individual pages or
ranges. The following are all valid (providing the PDF file is long enough).

<includePdfPages filename="mypdffile.pdf"/>

<includePdfPages filename="mypdffile.pdf" pages="1"/>

<includePdfPages filename="mypdffile.pdf" pages="1,2,3"/>

<includePdfPages filename="mypdffile.pdf" pages="2,1,1,2,2"/>

<includePdfPages filename="mypdffile.pdf" pages="1-5"/>

<includePdfPages filename="mypdffile.pdf" pages="1,2,4-5"/>

There are a number of differences between this tag and the other PageCatcher related tags. Unlike the others, in-
cludePdfPages doesn't require you to pre-pagecatch the file you intend to use (so saving you an additional step).
It also differs in that the imported PDF gets drawn "over the top" of your exiting document, rather than being
used as a background underneath your existing page. So if you have a header or footer in your page template, the
included PDF page will overwrite it.

How includePdfPages works with templates

When you have an includePdfPages tag in your RML file, RML outputs a page break before the first new page,
leaving you on the same page as the last imported one. This allows you to do template switching:

<setNextTemplate>

 <setNextTemplate name="myIncludePagesTemplate"/>

 <includePdfPages filename="mypdffile.pdf" pages="1,2,3"/>

 <setNextTemplate name="myNormalTemplate"/>

 <nextFrame/>

 <para>

 This text appears on the next normal (non-included) page of your

 document)

 </para>

This snippet switches to a new page template for use with your included pages, adds in the first three pages from
your PDF file, switches back to what is presumably the template you have been using throughout the rest of the
document, and outputs a line of text into the next "normal" page of your document. If you don't want any headers
or footers behind your PDF pages, define a page template called something like "blank" (in the template sec-
tion at the head pf your document) with a single frame and no decoration on it and use that. If you are content for
your included pages to appear over the template you have been using on the previous pages (if the included
pages don't have any headers and footers and have large enough margins not clash with the ones you are using in
your document, for example), then you can skip both of the setNextTemplate tags completely.

The nextFrame tag is used because the includedPdfPages places you at the top of the last included PDF
page. This allows you to flow paragraphs or other flowables down your last page. This may be useful if you want
to place text in a form, or use some other pre-prepared background for your text. If all you want to do is just drop
in a pre-made page, you need this nextFrame to kick you into the next normal page and continue with your docu-
ment normally

RML User Guide Document generated on 2025/07/04 20:17:34

Page 50

Look in section 7.6 ("Using multiple frames") for more info on the nextFrame and setNextTemplate
tags. Look at the file test\test_016_pagecatcher.rml for an example of this tag in use.

These attributes control the <includePdfPages> tag:

filename filename to include

pages The page list

template optional page template name

outlineText optional outline text

outlineLevel optional outline level

outlineClosed true for closed outline

leadingFrame (yes | no | 0 | 1 | notAtTop): no if you don't want a
page throw before the first page

isdata boolean true if the file is a pageCatcher .data file

orientation (0 | portrait | 90 | landscape | 180 | 270 | auto) auto
means use the file implied layout

8.9. Outlines

It can go in either graphics or in a story. (Assigning outline levels to parts of your document (such as paragraphs)
allows you to build up a hierarchical structure for your document).

The level specifies how deep in the outline the entry appears. The default level is 0.

closed, if set, hides any children of this outline entry by default. Closed takes Boolean arguments.

Example:

<outlineAdd>First outline entry</outlineAdd>

<outlineAdd level="1">sub entry</outlineAdd>

<outlineAdd closed="true">Second outline entry 2</outlineAdd>

<outlineAdd level="1">sub entry 2</outlineAdd>

A note about levels: in order to add a level 3 outline entry, the previous outline entry must be at least level 2
(2,3,4...). In other words, you can "move back" any number of levels, but you can only "move forward" one level
at a time.

8.10. Form field tags

An important class of reports contains lots of fields to be traditionally filled in manually by users, like for applic-
ation forms and similar cases. Sometimes though, these fields are already filled in by some computational pro-
cess and the user might only need to sign the entire form before leaving it with a bank clerk or sending it off to
some destination. RML supports creating both kind of reports by providing a set of special-purpose tags to create
such form elements (or fields, widgets...) quite easily. These tags are named <checkBox> <textBox> and
<letterBoxes> and are described in the rest of this section.

All these form elements share a lot of features when it comes to what they look like in the document. They all
appear as a rectangular shape with some background and border colour, plus some width for the border itself.
They also have some sort of text label attached to this rectangle to describe the field's purpose in the context of
the report to the human reader. The text inside the field as well as the one in the attached label also should have
the usual properties like fontname and size and colour. All form field elements have a boxStyle attribute that

RML User Guide Document generated on 2025/07/04 20:17:34

Page 51

can be used to group attribute names and values and reuse them in many field elements with much less typing ef-
fort.

But there are also specific features that distinguish these form elements from each other. A checkbox does not
contain text, but only a cross (when checked), and a textbox contains one or more lines of text with different pos-
sible alignments, while letterboxes are used for single line mono-space text with visible subcompartments for
each letter.

Checkboxes

By default, checkboxes have a very simple style similar to UK bank application forms - an outer rectangle and a
cross which exactly fills it when checked. The attributes control the appearance.

It is also possible to supply your own pair of bitmap images which will be used instead of the default drawing
mechanism - this could be used to provide 3d effects, tick-and-cross icons or whatever is needed. To make use of
this, set the two attributes graphicOn and graphicOff to point to two bitmap files on the disk; these will be
used in preference to the default appearance. Note that they will be stretched to the boxWidth and boxHeight
stated, so it is important to set the same aspect ratio as the underlying image. Also, remember the printing intent
- a 24 pixel bitmap drawn to occupy a 12 point space on a form will be visibly grainy on a good quality printer,
but may be fine on an inkjet.

Because checkboxes do not contain text it can be argued that when they are to be displayed as checked the cross'
colour should be the same as the border colour. Equally well it can be argued that it should be the same colour
used for text in textboxes. To provide both options checkboxes have an additional colour attribute named
checkStrokeColor which will be used for the cross instead of the border colour if the former is provided.

Note that the label attached to a checkbox is limited to three lines of text now and always appears at the right
margin of the box, but this might be generalised in future versions. The label is expected to be vertically centered
with the box no matter how many lines it is composed of.

The following code creates a row of sample checkboxes providing different values for the most relevant attrib-
utes:

<checkBox x="0cm" y="0cm" checked="0"/>

<checkBox x="1.5cm" y="0cm" checked="1"/>

<checkBox x="3cm" y="0cm"

 boxWidth="0.75cm" boxHeight="1cm"

 checked="1"/>

<checkBox x="4.5cm" y="0cm"

 boxWidth="0.75cm" boxHeight="1cm"

 lineWidth="0.1cm"

 checked="1"/>

<checkBox x="6cm" y="0cm"

 lineWidth="0.1cm"

 boxFillColor="yellow" boxStrokeColor="green"

 checked="1"/>

<checkBox x="7.5cm" y="0cm"

 lineWidth="0.1cm"

 boxFillColor="yellow" boxStrokeColor="green"

 checkStrokeColor="red"

 checked="1"/>

<checkBox x="9cm" y="0"

RML User Guide Document generated on 2025/07/04 20:17:34

Page 52

 line1="desc 1"

 line2="desc 2"

 checked="1"/>

<checkBox x="11.5cm" y="0"

 line1="desc 1"

 line2="desc 2"

 line3="desc 3"

 checked="1"/>

desc 2
desc 1

desc 3
desc 2
desc 1

Textboxes

A textbox contains one, but often more lines of text, like in an address field. (Of course, it can also contain no
text at all, like for a signature field.) Sometimes it is not clear in advance exactly how much text will go into one
such field. Therefore, textbox fields in RML provide a means for automatically resizing the fontsize to shrink the
contained text by exactly what is needed to make it fit into the box. This is a two-step process that first tries to
shrink the fontsize to make the text fit horizontally. If that is not enough, it is further shrinked to make it also fit
vertically. This process is controlled using the attribute shrinkToFit.

Because human readers are very sensible to reading text and get quickly irritated when it does not feel "right",
there is a default amount of space (1 point) left between the text and any of the borders of the box, which will be
respected by the resizing mechanism. This is hardcoded now, but might become another attribute in the future.

The following code creates a row of sample textboxes illustrating different values for the most relevant attrib-
utes: as well as the auto-resizing text feature:

<textBox x="0cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 label="labeled textbox">some text</textBox>

<textBox x="3.5cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 label="colorful textbox">some text</textBox>

<textBox x="7cm" y="0cm"

 lineWidth="0.1cm"

 boxWidth="3cm" boxHeight="1cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 label="bold textbox">some text</textBox>

<textBox x="10.5cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 lineWidth="0.1cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 fontName="Times-Bold"

 fontSize="14"

 label="textfancy textbox">some text</textBox>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 53

labeled textbox

some text

colorful textbox

some text

bold textbox

some text

textfancy textbox

some text

The following code creates a row of sample textboxes illustrating the auto-resizing text feature:

<textBox x="0cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 fontSize="14"

 label="no resizing">some text</textBox>

<textBox x="3.5cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 fontSize="14"

 label="horiz. resizing">some more text</textBox>

<textBox x="7cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 shrinkToFit="1"

 fontSize="14"

 label="vert. resizing">some text

 some text

 some text</textBox>

<textBox x="10.5cm" y="0cm"

 boxWidth="3cm" boxHeight="1cm"

 shrinkToFit="1"

 fontSize="14"

 label="horiz./vert. resizing">some more text

 some text

 some text

 some text</textBox>

no resizing

some text

horiz. resizing

some more text

vert. resizing

some text
some text
some text

horiz./vert. resizing
some more text
some text
some text
some text

Letterboxes

Letterboxes are intended for single-line text fields where each letter is contained in a subcell, clearly seperated
from neighbouring cells. This is often seen on official forms where people are expected to write letters of a word
at predefined positions. RML provides such letterboxes, too, and they behave mostly like textboxes, but show
some significant differences, too.

Usually, the overall width of a form field element is defined by the mandatory boxWidth attribute. For letter-
boxes, though, this is an optional attribute and specifies the width of a subcell containing one letter. The result-
ing width of the entire box is defined as a multiple of that boxWidth attribute with another one named count,
which is a mandatory attribute.

The following code creates a row of sample letterboxes showing basic attributes:

<letterBoxes x="0cm" y="7.5cm"

 count="12">letterboxes</letterBoxes>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 54

<letterBoxes x="0cm" y="6cm"

 count="12">more letterboxes</letterBoxes>

<letterBoxes x="0cm" y="4.5cm"

 boxWidth="0.75cm"

 count="12">letterboxes</letterBoxes>

<letterBoxes x="0cm" y="3cm"

 lineWidth="0.1cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 label="some label"

 count="12">letterboxes</letterBoxes>

<letterBoxes x="0cm" y="1.5cm"

 lineWidth="0.1cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 label="some label"

 fontName="Courier-Bold"

 fontSize="14"

 count="12">letterboxes</letterBoxes>

<letterBoxes x="0cm" y="0cm"

 lineWidth="0.1cm"

 boxWidth="0.75cm" boxHeight="0.75cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 label="some label"

 fontName="Times-Bold"

 fontSize="14"

 count="12">letterboxes</letterBoxes>

l e t t e r b o x e s

m o r e l e t t e r b

l e t t e r b o x e s

some label

l e t t e r b o x e s

some label

l e t t e r b o x e s

some label

l e t t e r b o x e s

There may also be instances where you want obvious dividers between each subcell, but you don't want entirely
separate boxes. Letterboxes have something that allows for this - the optional combHeight attribute.

In a 'standard' letterBoxes element (ie one where the combHeight isn't specified), the divider between each indi-
vidual subcell is a line which fills the whole height of the letterBoxes box. If you specify the combHeight, you
can vary the height of this line. This attribute must be a number between zero and one, where "0" means no di-

RML User Guide Document generated on 2025/07/04 20:17:34

Page 55

vider at all and "1" means one that is the whole height of the letterboxes element (and therefore "0.25" is a
quarter of the height and so on).

The following code creates a row of sample letterboxes showing the combHeight attribute in use:

<letterBoxes x="0cm" y="0cm"

 combHeight="0"

 count="4">comb</letterBoxes>

<letterBoxes x="3.75cm" y="0cm"

 combHeight="0.25"

 count="4">comb</letterBoxes>

<letterBoxes x="7.5cm" y="0cm"

 combHeight="1"

 count="4">comb</letterBoxes>

<letterBoxes x="11.25cm" y="0cm"

 lineWidth="0.1cm"

 boxWidth="0.75cm" boxHeight="0.75cm"

 boxFillColor="yellow" boxStrokeColor="blue"

 label="combHeight"

 fontName="Times-Bold"

 fontSize="14"

 combHeight="0.5"

 count="4">comb</letterBoxes>

c o m b c o m b c o m b

combHeight

c o m b

Using styles with form field elements

As we've already mentioned, checkBox, textBox and letterBoxes all allow you to re-use styles in a
similar way to the way you can re-use styles with paragraphs with the boxStyle tag. Like the other style tags
(paraStyle and blockTableStyle), boxStyle lives in the stylesheet section, near the start of your
document.

boxStyle style can have the following attributes:

name:
This is the required attribute which allows you to refer this style by name.

alias:
An optional attribute which allows you to refer to your style by another name.

parent:
If this is supplied, it must refer to the name of another style. This style with then inherit from the style named.

fontName:
An optional attribute, this refers to the font to be used for the main contents of letterboxes or a textbox - it is ig-
nored for checkBoxes.

fontSize:
This optional attribute sets the size for the main contents of letterboxes or a textbox - it is ignored for check-
Boxes.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 56

alignment:
For letterboxes or a textbox, this optional attribute sets the alignment of the contents of the box. It may be either
LEFT, RIGHT, CENTER or CENTRE. It is ignored for checkBoxes.

textColor:
An optional attribute that sets the colour for the main contents in the letterboxes or textbox.

labelFontName:
The (optional) tag specifying the font to be used for the label of the letterboxes, textbox or checkBox.

labelFontSize:
The (optional) tag specifying the size of the font to be used for the label of the letterboxes, textbox or checkBox.

labelAlignment:
The (optional) specifying the alignment of the label - may be LEFT, RIGHT, CENTER or CENTRE

labelTextColor:
An optional attribute specifying the colour to be used for the text of the label of an textBox, letterBox or check-
Box.

boxFillColor:
An optional tag specifying the colour to be used for the background for a textBox, letterBox or checkBox.

boxStrokeColor:
An optional tag specifying the colour to be used for the lines making up a textBox, letterBox or checkBox.

cellWidth:
An optional tag, specifying the width of a "cell" in a form element. Must be a measurment, but may 'in', 'cm',
'mm'or 'pt' - see the section on 'Coordinates and measurements' for more details on measurements.

cellHeight:
An optional tag, specifying the width of a "cell" in a form element. Must be a measurment, but may 'in', 'cm',
'mm'or 'pt'

Some Examples

As an example of them in use, let's set up two boxStyles, and see what effect they have on letterBoxes, text-
Boxes and a checkBox.

Firstly, the boxStyles:

<boxStyle name="special1"

 labelFontName="Helvetica"

 fontSize="10"

 alignment="RIGHT"

 textColor="red"

 fontName="Helvetica"

 labelFontSize="10"

 labelAlignment="RIGHT"

 labelTextColor="blue"

 boxStrokeColor="red"

 boxFillColor="pink"/>

<boxStyle name="special2"

 parent="special1"

 fontName="Courier"

RML User Guide Document generated on 2025/07/04 20:17:34

Page 57

 fontSize="12"

 textColor="green"

 labelFontName="Courier"

 labelFontSize="12"

 labelTextColor="green"

 boxFillColor="yellow"

 boxStrokeColor="red"/>

With the style 'special1':

style="special1"

 l e t t e r B o x e s

"style="special1"

textBox
"style="special1"

And with the style 'special2':

style="special2"

 l e t t e r B o x e s

"style="special2"

textBox "style="special2"

Barcodes

One other tag that may often find use on forms is the barCode tag. As its name implies, this creates a barcode
in one of a number of different symbologies.

The three attributes you need to supply for this tag are x and y to position it on the page and code to inform
rml2pdf which form of barcode you require.

This is a brief example of what a barcode tag looks like in use, and what it actually produces:

<barCode x="1cm" y="0" code="Code11">123456</barCode>

Figure 10: The "Code11" barcode

This table shows you the allowed names for the code attribute, along with an example of the barcode produced.

Type Code attribute to use Example barcode

Codabar Codabar

Code 11 Code11

Code 128 Code128

Code 39 Standard39

Code93 Standard93

RML User Guide Document generated on 2025/07/04 20:17:34

Page 58

I2of5 I2of5

Extended Code 39 Extended39

Extended Code93 Extended93

MSI MSI

USPS FIM FIM

USPS POSTNET POSTNET

8.11. Interactive Form Field tags

PDF allows documents to intereact with the user provided the renderer supports this. The most common render-
ers including Acrobat Reader, evince and the various browsers certainly allow this.
RML supports the following interactive form elements

• textField

textField Attributes

Attribute Meaning Default
name the radio's group (ie parameter) name None

value Value of the text field ''

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

width The widget width 120

height The widget height 36

fontName The name of the type 1 font to be used 'Helvetica'

fontSize The size of font to be used 12

maxlen None or maximum length of the widget value 100

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags print

fieldFlags Blank separated field flags (see below)

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

multiline if true then add multiline flag true

dashLen the dashline to be used if the borderStyle=='dashed' 3

RML User Guide Document generated on 2025/07/04 20:17:34

Page 59

• checkboxField

checkboxField Attributes

Attribute Meaning Default
name the radio's group (ie parameter) name None

value Value of the text field ''

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

size The outline dimensions size x size 20

checked if True the checkbox is initially checked False

buttonStyle the checkbox style (see below) check

shape The outline of the widget (see below) square

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags 'print'

fieldFlags Blank separated field flags (see below) required

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

• radioField

radioField Attributes

Attribute Meaning Default
name the radio's group (ie parameter) name None

value Value of the text field ''

name the radio's group (ie parameter) name None

value the radio's group name None

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

size The outline dimensions size x size 20

selected if True this radio is the selected one in its group False

buttonStyle the checkbox style (see below) check

shape The outline of the widget (see below) square

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags print

fieldFlags Blank separated field flags (see below) noToggleToOff required radio

forceBorder when true a border force a border to be drawn False

RML User Guide Document generated on 2025/07/04 20:17:34

Page 60

radioField Attributes

Attribute Meaning Default
relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

• choiceField

choiceField Attributes

Attribute Meaning Default
name the radio's group (ie parameter) name None

value Value of the text field ''

name the radio's group (ie parameter) name None

options List or tuple of avaiable options []

value Singleton or list of strings of selected options []

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

width The widget width 120

height The widget height 36

fontName The name of the type 1 font to be used 'Helvetica'

fontSize The size of font to be used 12

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags print

fieldFlags Blank separated field flags (see below) combo

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

maxlen None or maximum length of the widget value None

• listboxField

listboxField Attributes

Attribute Meaning Default
name the radio's group (ie parameter) name None

value Value of the text field ''

name the radio's group (ie parameter) name None

options List or tuple of avaiable options []

value Singleton or list of strings of selected options []

x the horizontal position on the page (absolute coordinates) 0

y the vertical position on the page (absolute coordinates) 0

width The widget width 120

height The widget height 36

fontName The name of the type 1 font to be used 'Helvetica'

RML User Guide Document generated on 2025/07/04 20:17:34

Page 61

listboxField Attributes

Attribute Meaning Default
fontSize The size of font to be used 12

fillColor colour to be used to fill the widget None

textColor the colour of the symbol or text None

borderWidth as it says 1

borderColor the widget's border colour None

borderStyle The border style name 'solid'

tooltip The text to display when hovering over the widget None

annotationFlags blank separated string of annotation flags print

fieldFlags Blank separated field flags (see below)

forceBorder when true a border force a border to be drawn False

relative if true obey the current canvas transform False

dashLen the dashline to be used if the borderStyle=='dashed' 3

Button styles

The button style argument indicates what style of symbol should appear in the button when it is selected. There
are several choices

check
cross
circle
star
diamond

note that the document renderer can make some of these symbols wrong for their intended application. Acrobat
reader prefers to use its own rendering on top of what the specification says should be shown (especially when
the forms hihlighting features are used

Widget shape

The shape argument describes how the outline of the checkbox or radio widget should appear you can use
circle
square

the renderer may make its own decisions about how the widget should look; so Acrobat Reader prefers circular
outlines for radios.

Border style

The borderStyle argument changes the 3D appearance of the widget on the page alternatives are
solid
dashed
inset
bevelled
underlined

fieldFlags Argument

The fieldFlags arguments can be an integer or a string containing blank separate tokens the values are shown in
the table below. For more information consult the PDF specification.

Field Flag Tokens and values

Token Meaning Value

readOnly The widget is read only 1<<0

required the widget is required 1<<1

RML User Guide Document generated on 2025/07/04 20:17:34

Page 62

Field Flag Tokens and values

Token Meaning Value

noExport don't export the widget value 1<<2

noToggleToOff radios one only must be on 1<<14

radio added by the radio method 1<<15

pushButton if the button is a push button 1<<16

radiosInUnison radios with the same value toggle together 1<<25

multiline for multiline text widget 1<<12

password password textfield 1<<13

fileSelect file selection widget 1<<20

doNotSpellCheck as it says 1<<22

doNotScroll text fields do not scroll 1<<23

comb make a comb style text based on the maxlen value 1<<24

richText if rich text is used 1<<25

combo for choice fields 1<<17

edit if the choice is editable 1<<18

sort if the values should be sorted 1<<19

multiSelect if the choice allows multi-select 1<<21

commitOnSelChange not used by reportlab 1<<26

annotationFlags Argument

PDF widgets are annotations and have annotation properties these are shown in the table below

Annotation Flag Tokens and values

Token Meaning Value

invisible The widget is not shown 1<<0

hidden The widget is hidden 1<<1

print The widget will print 1<<2

nozoom The annotation will notscale with the rendered page 1<<3

norotate The widget won't rotate with the page 1<<4

noview Don't render the widget 1<<5

readonly Widget cannot be interacted with 1<<6

locked The widget cannot be changed 1<<7

togglenoview The widget may be viewed after some events 1<<8

lockedcontents The contents of the widget are fixed 1<<9

8.12. Colorspace Checking

RML >= v2.5 supports a way to ensure the consistent enforcement of color models within a document. For more
information on this topic, and examples of when you might want to use different scenarios, please refer to the
'Printing' chapter later in this document.

RGB, CMYK and the use of 'spot colors' such as Pantone can be allowed or disallowed using the 'colorSpace'
parameter to the document tag, which can be set to the following values:

■ MIXED - The default. As in RML versions before 2.5, rgb, cmyk, spot colors and 'named' colors can all
be used.

■ RGB - Permits only the use of RGB colour values.

■ CMYK - Permits only the use of CMYK colour values.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 63

■ SEP - 'Spot Colors' only - all colour values must define a 'spotName' value.

■ SEP_BLACK - spot colors, plus shades of grey only.

■ SEP_CMYK - spot colors plus cmyk values only.

The use of any color definitions outside the specified type will result in an exception when you try to compile the
document, thereby ensuring that, for instance, a document can be produced for CMYK or spot color printing
without containing any RGB color definitions.

Any 'named' colours (see appendix A or 'reportlab/lib/colors.py') for black or shades of grey are automatically
converted to cmyk/rgb as required. So you can use lowercase 'black' as a color in all models except 'SEP'. How-
ever, any other RML 'named' colors such as 'aqua' or 'hotpink' will not be converted.

8.13. Balanced Column

Use the BalancedColumns tag to make a flowable that splits its content flowables into two or more roughly
equal sized columns. Effectively n frames are synthesized to take the content and the flowable tries to balance
the content between them. The created frames will be split when the total height is too large and the split will
maintain the balance.

Attributes
ncols - Sets the number of columnns content should be split
needed - Sets the minimum space needed by the flowable (default is 72 points)
spaceBefore - Sets space before the content
spaceAfter - Sets space after the content
showBoundary - Draws a boundary box around each column
leftPadding - Sets left paddings
innerPadding - Sets inner padding
rightPadding - Sets right padding
topPadding - Sets top padding
bottomPadding - Sets bottom padding

More examples here test_051_balancedcolumns.rml test_051_balancedcolumns.pdf

https://www.reportlab.com/examples/rml/test/test_051_balancedcolumns.rml
https://www.reportlab.com/examples/rml/test/test_051_balancedcolumns.pdf

RML User Guide Document generated on 2025/07/04 20:17:34

Page 64

9. About Cross References and Page Numbers
Many documents (such as this one) require page cross references. For example the table of contents of this user
guide lists the page numbers of the beginnings of each part, chapter, and section.

RML provides several features that support cross referencing and page number calculations. The name and
NamedString tags allow forward referencing and the evalString tag allows computations of page num-
bers (or other computations) inside an RML text. Furthermore these techniques may be combined with prepro-
cessing methods, such as XSL, the C preprocessor, or the Preppy preprocessor to allow the convenient construc-
tion of structures such as tables of contents, indices or bibliographies.

9.1. the namedString tag and forward references

The namedString tag is similar to the name tag -- it associates a name to a string of text. The named-
String tag is more general than the name tag in the sense that it allows other string constructs such as get-
Name in the named text. For example, the following snippet associates the name Introduction with the cur-
rent page number at the time of formatting.

<namedString id="Introduction">The Introduction starts at <pageNumber/></namedString>

The name tag does not permit other tags inside the string it names in this manner.

Elsewhere, the RML text may substitute the page number for the introduction using the construct

<name id="Introduction"
default="this is a default placeholder, used if Introduction is undefined."/>

...and this reference to the Introduction name may occur before the Introduction name is defined. For
example the reference may occur at the beginning of the document in the Table of Contents. Whenever a name is
referenced before it has been defined the default attribute must be present. In order to prevent possible
formatting anomalies the default value should be approximately the same size as the expected final value.

9.2. Multiple pass pdf formatting

RML2PDF resolves names that are referenced before they have been defined by making (by default) at most two
passes through the text. If the first pass does not define all names before they have been referenced then
RML2PDF formats the document twice.

On the first pass the default value for any undefined name is used for formatting the document (and it may under
some circumstances effect the placement of the page breaks). On the second the program uses the resolved value
determined on the first pass where the name is referenced.

It is possible to create a chain of references that cannot be resolved, such as:

<namedString id="a"><name id="b" default="XXX"/></namedString>
<namedString id="b"><name id="a" default="XXX"/></namedString>

In this case RML2PDF will signal an error and fail.

It is also possible to have a chain of references which requires more than one pass to resolve, such as:

<namedString id="a"><pageNumber/> is where A is defined, and <name id="b" default="XXX"/></namedString>
...
<namedString id="b"><pageNumber/> is where B is defined, and <name id="c" default="XXX"/></namedString>
...
<namedString id="c"><pageNumber/> is where C is defined</namedString>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 65

By default RML2PDF will fail in this case also, but it is possible to invoke the main processing function
RML2PDF.go to allow additional formatting passes. For example as in:

rml2pdf.go(xmlInputText, passLimit=3)

to request that the processor execute a maximum of 3 formatting passes before signalling an error if more unre-
solved names remain.

WARNING: A document that requires two formatting passes will take about twice as long to generate as a
document that requires only one. For time critical applications it is best to avoid the need for extra formatting
passes if they are not needed.

RML documents that do not have references to names before they are defined will not require more than one
formatting pass.

9.3. Calculated Page Numbers: evalString

Some documents require the ability to give "relative pagenumbers." To meet this requirement RML2PDF in-
cludes the evalString tag. For example The following para:

<para>
The last page is <getName id="LASTPAGENO" default="-999"/>
One less than that is
<evalString default="XXXX">
<getName id="LASTPAGENO" default="-999"/> - 1
</evalString>.
The current page is <pageNumber/>.
And there are
<evalString default="XXXX">
<getName id="LASTPAGENO" default="-999"/> - <pageNumber/>
</evalString>
pages to go.
</para>

Performs arithmetic calculations (subtractions) using the current page number and a forward reference to the
LASTPAGENO, which is presumably defined on the last page. In the context of this document the paragraph
evaluates to the following.

The last page is 1 One less than that is 0. The current page is 65. And there are -64 pages to go.

An RML document can make use of arbitrary arithmetic calculations using the evalString tag, but in prac-
tice addition + and subtraction - over page numbers are the most useful.

9.4. Generated RML

Although the name, namedString, getName and evalString tags can be used to build tables of con-
tents and indices, it is not easy to directly edit RML documents that includes cross reference structures of this
kind.

For example to directly add a new section to the this document in RML text it would be necessary to add a new
table of contents entry at the top, something like this:

<para style="contents2">
<getName id="chapterNumber"/>.<seq id="sectionNumber"/>
Installation
</para>

As well as the text of the section itself

RML User Guide Document generated on 2025/07/04 20:17:34

Page 66

<condPageBreak height="144"/>
<h2>
<getName id="chapterNumber"/>.<seq id="sectionNumber"/>
Installation and Use
</h2>

<para>
RML2PDF is available in several formats: [etcetera...]
</para>

And unless the creator takes great care it may be necessary to adjust various section or chapter numbers in other
entries as well.

To avoid this complexity this document is not directly written in RML per se, but is written using a text prepro-
cessor called preppy which automatically builds the table of contents and inserts the appropriate entries at the
top (while keeping track of chapter and section numbers).

For very complex documents using a preprocessor of some sort may be advisable.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 67

10. More graphics

10.1. curves

We have seen how you can use the <lines> tag to create a number of straight lines with one command. Not all
the lines you want to draw will be straight, which is why we have the <curves> tag.

Like <lines>, <curves> must appear in the pageGraphics section of your template. Unlike lines,
you need to specify 4 points as X-Y co-ordinate pairs (i.e. you need to feed curves sequences of 8 numbers at
a time, rather than the 4 you need for lines).

The curves tag produces a Bezier curve. Bezier curves are named after the French mathematician, Pierre Bézi-
er, and are curves that utilize at least three points to define a curve. RML curves use the two endpoints (or "an-
chor points") and two "nodes".

Figure 11: A Bezier Curve

In RML, if you give a curve 4 control points (which we shall call (x1,y1), (x2,y2), (x3,y3), and (x4, y4)), the
start point of the curve will be specified by (x1,y1) and the endpoint specified by (x4,y4). The line segment from
(x1,y1) to (x2,y2) forms a tangent to the curve. The line segment from (x3,y3) to (x4,y4) also forms a tangent to
the curve. If you look at an illustration of a Bezier curve, you will see that the curve is entirely contained within
the convex figure with its vertices at the control points.

Example:

<template>

 <pageTemplate id="main">

 <pageGraphics>

 <curves>

 198 560

 198 280

 396 280

 396 560

RML User Guide Document generated on 2025/07/04 20:17:34

Page 68

 </curves>

 </pageGraphics>

 <frame id="first" x1="0.5in" y1="0.5in" width="20cm" height="28cm"/>

 </pageTemplate>

</template>

10.2. paths

To connect lines and curves you need to use the <path> tag. This allows you to make complex figures.

Like the other graphics in RML, <path> lives in the <pageGraphics> section at the start of the document.

Initially, you must give a <path> tag x and y attributes to tell it the co-ordinates for the point where this path is
going to start. You may also at the same time give it attributes called stroke and fill (which do the same as
their counterparts for the basic shapes such as rect and circle), and an additional one called close. If the
close attribute is set to "yes" or "1", then once the path is completed, the stroke is finished off by painting a
line from the last point given to the first point, enclosing the figure. You may specify attribute autoclose to
be one of the values none, pdf or svg; these values alter how automatic closing of sub-paths is handled. The
default none just leaves the renderer to handle filling as does pdf, but in the latter case all-subpaths are forced
to be closed if fill is set. The last value svg fills and strokes separately (stroke last).
Finally you can control how filling of complex shapes is handled by specifying attribute fillrule to be one of
the values none, even-odd or non-zero. The default none means let the pdf canvas decide, but that is cur-
rently equivalent to even-odd. For further information on fill rules consult a graphics primer.

The <path> tag has its paired </path> tag. Between these two tags, you can have a number of things.

■ You can have a list of pairs of X-Y co-ordinates.
If this is the case, a straight line is drawn to each point in turn.

■ You can have a paired <moveto></moveto> tag.
If this is the case, you need to give an x-y co-ordinate pair between these two tags. The "pen" or "brush"
then moves to this point, and any further points or instructions given after this (while still inside the
<path> tag) continue onwards from this new point.

■ You can have a paired <curvesto></curvesto> tag.
This is similar to both the <curves> tag and the <moveto> tag discussed above. Inside the pair of
<curvesto> tags, you need to give rml2pdf sets of 3 pairs of X-Y co-ordinates at a time. Like
<curves>, <curvesto> creates a Bezier curve. However, since it is inside a path object, it already
knows one of the points - the start point is assumed to be the last point in the path before the
<curvesto> tag. In other words, the "pen" or "brush" is already in a position, and this is taken as the
first point for your Bezier curve.

■ You can have a <closePath/> tag.
This will close the current sub-path; this tag must be followed by a <moveTo> tag or the end of the
<path>.

Here is an example of how a <path> looks in action:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 69

Figure 12: The output from EXAMPLE 7

EXAMPLE 7a

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE document SYSTEM "rml.dtd">

<document filename="example_7a.pdf">

 <template>

 <pageTemplate id="main">

 <pageGraphics>

 <fill color="red"/>

 <stroke color="black"/>

 <path x="247" y="72" fill="yes" stroke="yes" close="yes">

 247 172

 147 172

 147 272

 247 272

 247 372

 347 372

 347 372

 347 272

 447 272

 447 172

 347 172

 347 72

 <!-- This completes the first shape: a red cross.-->

 <moveto>267 572</moveto>

 <!-- This moves the "pen position" -->

RML User Guide Document generated on 2025/07/04 20:17:34

Page 70

 <!-- Notice that because we have used a "moveto", the -->

 <!-- final line at the base of the cross is not completed, even -->

 <!-- though the "close" attribute of the "path" tag is set to -->

 <!-- "yes" -->

 277 612

 <!-- this acts as the start point for the Bezier curves below -->

 <curvesto>

 147 585

 147 687

 297 792

 447 687 447 585 317 612

 </curvesto>

 327 572

 <!-- We don't need to give the last point because close is -->

 <!-- set to "yes" -->

 </path>

 </pageGraphics>

 <frame id="first" x1="72" y1="72" width="451" height="698"/>

 </pageTemplate>

 </template>

 <stylesheet>

 </stylesheet>

 <story>

 <para></para>

 </story>

</document>

This example has used the 'template/stylesheet/story' form of document. But the story is empty, and we haven't
used the stylesheet at all. The following example shows how we can use the 'pageDrawing' form.

EXAMPLE 7b

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE document SYSTEM "rml.dtd">

<document filename="example_7b.pdf">

 <stylesheet>

 </stylesheet>

 <pageDrawing>

 <fill color="red"/>

 <stroke color="black"/>

 <path x="247" y="72" fill="yes" stroke="yes" close="yes">

 247 172

 147 172

 147 272

 247 272

 247 372

 347 372

 347 372

 347 272

RML User Guide Document generated on 2025/07/04 20:17:34

Page 71

 447 272

 447 172

 347 172

 347 72

 <moveto>267 572</moveto>

 277 612

 <curvesto>

 147 585 147 687 297 792

 447 687 447 585 317 612

 </curvesto>

 327 572

 </path>

 </pageDrawing>

</document>

10.3. grids

The <grid> is a graphics tag, and hence lives in the PageGraphics section of your RML document. It pro-
duces a grid of lines. It takes two arguments - xs which is a list of x co-ordinates (separated by commas), and
ys which is a comma-separated list of y co-ordinates.

Example:

<grid xs="1cm,2cm,3cm,4cm,5cm,10cm" ys="1cm,2cm,3cm,4cm,5cm,10cm"/>

10.4. Translations

In a graphic operation (i.e. a pageGraphic or an illustration), <translate> moves the origin of the
drawing.

<translate> takes two optional attributes: dx and dy. Both can be given in any unit that RML understands.
dx is the distance that the to be moved in the X axis, and dy is the distance it is to be moved in the Y axis. They
are optional to allow you to only give one of the pair - so moving the origin in only one direction.

Examples:

<translate dx="55" dy="91"/>

<translate dx="1in"/>

<translate dy="6.5cm"/>

This is what a translation with a dx of 50 and a dy of 50 looks like:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 72

Original

X
dx=50 dy=50

50 pt

X

50
 p

t
Figure 13: An example of the <translate> tag in use

And this is slightly simplified version of the relevant bit of RML:

<illustration>

 <lines>

 16 40 116 40

 16 40 16 140

 156 40 256 40

 156 40 156 140

 </lines>

 <setFont name="Times-Roman" size="12"/>

 <fill color="black"/>

 <drawCentredString x="58" y="12">Original</drawCentredString>

 <setFont name="Helvetica-Bold" size="50"/>

 <fill color="red"/>

 <drawString x="16" y="41">X</drawString>

 <translate dx="142"/>

 <setFont name="Times-Roman" size="8"/>

 <fill color="lightgray"/>

 <drawCentredString x="58" y="18">50 pt</drawCentredString>

 <setFont name="Times-Roman" size="12"/>

 <fill color="black"/>

 <drawCentredString x="58" y="12">dx=50 dy=50</drawCentredString>

 <!-- This is relative to the origin of the black lines in the illustration,

 which is why it doesn't match the actual translate performed:

 it is what the translate would be if the origin was at 15,40 -->

 <setFont name="Helvetica-Bold" size="50"/>

 <fill color="red"/>

 <translate dx="55" dy="91"/>

 <drawString x="0" y="0">X</drawString>

</illustration>

10.5. scaling

<scale>, as its name suggests, allows you to stretch or shrink a graphic.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 73

The <scale> tag takes two optional attributes: sx and sy. sx is how much to scale the X axis, and sy> is
how much to scale the Y axis. The scaling does not have to be proportional - omitting one allows you to change
the scaling in one direction only. And you can shrink the shape as well as scale it up - an sx or sy of "2"
doubles the size of it, but an sx or sy of "0.5" halves it.

Scale factors can also be negative. Using an sx of -1 and an sy of 1 produces a mirror image.

Examples:

<scale sx="2" sy="0.25"/>

<scale sx="2"/>

<scale sy="0.5"/>

This is what a scale with a sx of 2 and an sy of 2 looks like:

Original

X
sx=2 sy=2

X
Figure 14: An example of the <scale> tag in use

10.6. rotations

The <rotate> tag allows allows you to rotate a graphic.

<rotate> takes one mandatory attributes called degrees, which is the number of degrees to rotate the ob-
ject. A positive number for degrees rotates it anti-clockwise, a negative number rotates it clockwise.

When using <rotate>, objects are rotated around the current origin. If you want to rotate a specific element of
a pageGraphic or illustration, you will have to use a translate to move the origin before you do
the rotate.

If you translate to the middle of the page, rotate by 90 degrees and then draw the string "hello", the "hello"
will appear starting in the middle of the page going upwards.

Examples:

<rotate degrees="90"/> <!-- ANTI-clockwise -->

<rotate degrees="-90"/> <!-- clockwise -->

This is what a <rotate> looks like with degrees set to 45 and -45:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 74

Original

P
degrees=45

P
Figure 15: A rotate with a positive value for degrees.

Original

P
degrees=- 45

P
Figure 16: A rotate with a negative value for degrees.

10.7. Skew

<skew> is a transform which distorts both axes of a graphic. It is non-orthagonal - in other words, it is a trans-
formation that does not preserve right angles.

<skew> has two mandatory attributes: alpha and beta. Both are angles - look at the example below to see
how they work.

Example:

<skew alpha="10" beta="10"/>

This is what a skew with an alpha of 10 and a beta of 30 looks like:

RML User Guide Document generated on 2025/07/04 20:17:34

Page 75

Original

X
alpha=10 beta=30

alpha

beta

X
Figure 17: An example of the <skew> tag in use.

10.8. Generic affine transforms

A transform allows the coordinate space to be filtered through a general two dimensional affine transform. All
the other coordinate transformations can be defined in terms of a transform. A transform requires 6 numbers a, b,
c, d, e, and f to define the transformation.

x' = ax + cy + e

y' = bx + dy + f

For example to specify a=1, b=1.2, c=1.3, d=1.4, e=1.5 and f=1.6 write

<transform>1 1.2 1.3 1.4 1.5 1.6</transform>

[NOTE: All the examples from this section are gathered together in the file example_8.rml].

10.9. About scale, rotate, and skew

■ It is very easy to move objects "off the page". If you are doing a <translate> as a
<pageGraphic>, it is possible to put the origin off the visible area of the page. If you are doing a
<translate> in an <illustration>, no checks are performed about whether an object is inside
the limits of the <illustration> or not, so it is still possible to put it outside the limits of the page
and lose it. If you expect to see a diagram and all you get is a blank page, this is the most common
cause.

■ Scaling has its own version of the same problem. It is possible to <scale> an object so that most or all
of it is off the page, but it is also possible to <scale> something to such a small size that it "shrinks to
nothing". Be especially careful when doing scaling with large factors. Something that may have been a
small error without the scaling may put your object off the page entirely once you have performed the
<scale>.

■ The scaling operation scales everything - including line widths. If you are taking a huge diagram and
scaling it down, the lines may be scaled out of existence. Conversely, if you take something microscop-
ic and enlarge it, you may end up just getting a blob due to the width of the lines being scaled up as
well.

■ Another thing to remember is that these transformations are incremental - in a series of transforms, each
one will modify the output of the one before it. So the order you carry the operations out in is very im-
portant. The result of the sequence "translate, rotate, scale" is very different to that of
"scale, rotate, translate".

RML User Guide Document generated on 2025/07/04 20:17:34

Page 76

■ If performing multiple operations, use the order "translate -> rotate -> scale or skew"
whenever possible. Using a different order may result in the axes being distorted or other results that
lead to an ugly output that isn't what you were trying to do.

10.10. Bitmapped images

RML also allows you to insert pre-existing images into your PDF files. If you have a graphic file in either the
.gif or .jpg format, you can use the <image> tag to insert it into your document.

The <image> tag goes in the <pageGraphics> section at the head of your RML document. It has 5 attrib-
utes, 3 of which are mandatory and two of which are optional. The file attribute tells rml2pdf the name of the
input file that you want to incorporate into your document, the x and y attributes give the co-ordinates for the
bottom left hand corner of where the image will be placed on the page. The optional width and height attrib-
utes allow you to specify how big it should be on the page - this means that you can over-ride the normal size of
the file and display it at any size that is appropriate. (The x, y, width and height attributes can all be gives in
points, mm, cm or inches).

Be very careful when using the width and height attributes. If misused, these attributes can lead to you hav-
ing a distorted, ugly and out of proportion picture in your final document. Whenever possible, you should use a
paint application (e.g. Paintshop Pro, Photoshop, Graphics Converter, GIMP) to save the file at the correct size,
and use the correct height and width attributes to the <image> tag. Using larger files and re-sizing inside
RML will also lead to the output PDF file being bloated and larger than it needs to be.

This example shows how these tags look in action:

<pageGraphics>

 <image file="myFile.gif" x="72" y="72"/>

 <image file="myFile.gif" x="369" y="72" width="80" height="80"/>

 <image file="myFile2.jpg" x="72" y="493"/>

 <image file="myFile2.jpg" x="369" y="493" width="80" height="80"/>

</pageGraphics>

10.11. Text Fields

To allow the creation of forms we have a graphics tag that allows us to specify that the page should display an
entry box.

The <textField> tag goes in the <pageGraphics> section at the at the start of the RML document. It has
the following optional attributes: id (the field name), value (the field initial value), x (the field x coordinate),
y (the field y coordinate), width (the field width), height (the field height), maxlen (maximum allowd
number of field characters) & multiline (whether the field may contain more than one line).

As a convenience the attributes may instead be specified using <param> tags within the body of the
<textField> tag. The name attribute of the <param> tag should be one of the above attribute names. If no
value attribute or <param> is seen then the contents of the <textField> becomes the initial value of the
field.

It is an error to define an attribute more than once

RML User Guide Document generated on 2025/07/04 20:17:34

Page 77

10.12. place, illustration & graphicsMode

place

We have seen how graphics and flowables do not mix in RML. The only exceptions to this are the <place>
tag, and the <illustration> tag. <place> allows you to put a flowable inside a pageGraphic or il-
lustration. You can include a paragraph inside a grid, or a table inside a path.

<place> takes 4 attributes, all of which are required. x, and y are the x and y co-ordinates for where you want
the flowable placed. width and height are the width and height of the flowable.

Example:

<pageGraphics>

 <place x="10.5cm" y="10.5cm" width="9cm" height="9cm">

 <para>Your flowables would go here.</para>

 </place>

</pageGraphics>

illustration

You can think of an <illustration> as like one of the illustrations in a book. It is a "box" of space on the
page which can contain any of the graphics that you would normally expect to find in a <pageGraphics> tag.
The position of this box depends purely on its place in the story, which means that it can appear anywhere on the
page depending on the paragraphs and other flowables around it. This is in contrast to the pageGraphics
which are always placed in a specific place (measured from the origin).

graphicsMode

You can think of a <graphicsMode> tag as an <illustration> without a size. It allows you to insert ar-
bitrary graphics operations into a story without using up any space. The <graphicsMode> tag takes an ori-
gin attribute which can take the values local, frame or page to specify the coordinate origin to be used.
Value local means relative to the position where the <graphicsMode> tag is in the current frame, frame
means relative to the frame it is in and page means relative to the page (ie absolute).

Example:

<illustration width="90" height="90">

 <fill color="red"/>

 <circle x="45" y="45" radius="30" fill="yes"/>

 <setFont name="Times-Roman" size="8"/>

 <drawString x="0" y="0">

 Any graphics could go here.

 </drawString>

</illustration>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 78

Figure 18: Output from EXAMPLE 9

Notice the symmetry: the <place> tag lets you use flowables within a <pageGraphic>; the
<illustration> tag lets you do graphics operations in a box within the flow of the <story> (or any story-
like context such as a table cell).

The following example shows the use of both place and illustration:

EXAMPLE 9

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE document SYSTEM "rml.dtd">

<document filename="example_9.pdf">

 <template>

 <pageTemplate id="main">

 <pageGraphics>

 <grid xs="1cm,2cm,3cm,4cm,5cm,10cm,20cm" ys="1cm,2cm,3cm,4cm,5cm,10cm,20cm"/>

 <place x="10.5cm" y="10.5cm" width="9cm" height="9cm">

 <title>This is a use of <i>place</i></title>

 <spacer length="15"/>

 <para>

 This is a flowable. In this case, it is in a <para>

 tag, but it could be any flowable. It has been placed

 inside a grid, but you could put it inside any graphic or

 pageGraphics. Using the place tag, you can have complete

 control over where you want your flowables to appear.

 </para>

 <spacer length="12"/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 79

 <para>

 You can include Greek: <greek>abgd</greek>.

 </para>

 <spacer length="12"/>

 <blockTable>

 <tr>

 <td>Or</td><td>even</td>

 </tr>

 <tr>

 <td>a</td><td>blockTable.</td>

 </tr>

 </blockTable>

 </place>

 </pageGraphics>

 <frame id="first" x1="72" y1="72" width="451" height="698"/>

 </pageTemplate>

 </template>

 <stylesheet>

 <paraStyle name="style.Title"

 fontName="Courier-Bold"

 fontSize="24"

 leading="36"

 />

 </stylesheet>

 <!-- The story starts below this comment -->

 <story>

 <title>Example 9</title>

 <para>

 This is a page which shows you how illustrations, grids and the place tag work.

 </para>

 <illustration width="90" height="90">

 <fill color="red"/>

 <circle x="45" y="45" radius="30" fill="yes"/>

 <setFont name="Times-Roman" size="8"/>

 <drawString x="0" y="0">This is an illustration</drawString>

 </illustration>

 <para>

 The red circle you can see is an <i>illustration</i>, not a <i>pageGraphic</i>.

 </para>

 <illustration width="75" height="75">

 <fill color="teal"/>

 <circle x="30" y="30" radius="30" fill="yes"/>

 <stroke color="darkslategray"/>

 <grid xs="15,30,45" ys="5,10,15,20,25,30,35,40,45,50"/>

 </illustration>

 <para>

 So is the teal colored one.

 </para>

 <para>

 These are all flowables in the story.

 </para>

 </story>

</document>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 80

10.13. spacer

<spacer> is another tag which does just what the name suggests. A <spacer> inserts an empty element into
the page to force other elements downwards or sideways. The spacer tag has two attributes - length is man-
datory and refers to the length down the page, and width is optional.

Example:

To produce a spacer 15 points in height and one inch wide, you could do the following:

<spacer length="15" width="72"/>

10.14. Form and doForm

A <form> is a group of graphical operations, stored together and given a name. This allows you to group com-
plex graphics together and to re-use them in more than one place with ease. To do this, you would use the do-
Form tag.

Your form would appear in the pageGraphics section of your RML document (inside the pageTemplate).
<doForm> also appears in the pageGraphics section.

The <form> tag has one attribute - a mandatory one called name which identifies the form.

The <doForm> tag executes the sequence of graphical operations defined with a <form> tag. It also has only
one mandatory attribute called name.

Example:

<pageGraphics>

 <form name="myForm">

 <drawString x="0" y="24">

 Your graphic operations would go here.

 </drawString>

 <drawString x="0" y="12">

 There would probably be a lot of them to make up something useful.

 </drawString>

 </form>

 <doForm name="myForm"/>

</pageGraphics>

10.15. Why use forms?

Why use forms when you can just cut and paste big chunks of text inside your RML document with your favor-
ite text editor or word processor?

The benefits are dramatically cut file sizes, reduced production time and apparently even speeding things up on
the printer. If you are going to be using PDF files in any situation where people will be downloading them,
massively reduced file sizes will be appreciated by your users. These advantages become even more obvious
with multiple similar documents. If you are dealing with a run of 5000 repetitive forms - perhaps payslips or
single-page invoices - you only need to store the backdrop once and simply draw the changing text on each page.

forms should be used whenever you have a graphic that is used repeatedly. It may be something as small as
your company logo or some sort of symbol you want to flag interesting bits of text with, or something as large as

RML User Guide Document generated on 2025/07/04 20:17:34

Page 81

a whole page backdrop. As long as you use it repeatedly, it's worth using a form to do it.

forms don't even have to be created in RML. You can use another application (such as Adobe Illustrator or
Word) and distil the output to PDF. You can then use our PageCatcher product to generate the forms, which can
then be used from RML.

Look on our web site for more information on PageCatcher: http://www.reportlab.com/pageCatcher/index.html

RML User Guide Document generated on 2025/07/04 20:17:34

Page 82

11. Conditional Formatting

11.1. Introduction

WARNING - this is an advanced topic, intended for programmers trying to deal with difficult layout cases. The
tags documented here have the potential to cause hard-to-understand exceptions if not used correctly!

Conditional formatting allows you to include expressions in your RML text which are evaluated or executed
when the pdf is actually being built. This means that you can vary the content of your document depending on
conditions (such as where you are on the page) which you do not know in advance.

For instance, you may be including dynamic content in your document which is likely to be of variable length.
You could use the value of one of the document's internal formatting variables to include or exclude certain con-
tent, based on the remaining height of a page or the current page number. One common use is in the case of cre-
ating documents for printing: these could be 'padded out' with optional content, to make sure that they are always
a 4-page spread. Another useful application would be deciding whether there is space to include a large image or
diagram in the present location.

A working example using all of these tags can be found in rlextra/rml2pdf/test/test_039_doc_programming.rml.

Basic programming primitives (assignment, loop, if, while etc.) have been made available as tags. These can be
given expressions which can use your own variables, as well as built-in ones available during rendering. All ex-
pressions must be valid python literal expressions.

The following internal variables are available to use as conditions:

availableWidth and availableHeight give you the remaining height and width of the current frame.

doc.frame.id returns the id of the current frame

doc.pageTemplate.id returns the id of the current page template

doc.page returns the current page number.

11.2. Tags

The <docIf>, <docElse> and <docWhile> tags allow you to control which content is included and ex-
cluded - while, or if, a condition is true or false.

The <docPara> tag allows you to include the value of an expression in the output text. This is useful for de-
bugging document layouts (e.g. temporarily inserting paragraphs like "you are [3] inches down the [left] frame
of the [chapter_first_page] template on page [19]"), but you can also use it to display facts you stored earlier.
The value can be formatted using Python format strings - see the test case above for details.

<docAssign> assigns a value to a variable, and <docExec> executes a statement or expression.

The <docAssert> tag allows you to test an expression and raise an exception if it is not true. This can be a
useful quality assurance technique. As with the docPara example for debugging, you can include assertions like
"I should now be at the top of page 3" or "I should now be in the footer frame".

11.3. Operators

When using docIf or docWhile tags, you can use the following operators to evaluate your conditions:

= < <= > => %

RML User Guide Document generated on 2025/07/04 20:17:34

Page 83

However, bear in mind that the 'greater than' and 'less than' operators must be written in RML as > and <

11.4. Examples

Some sample code demonstrating several of the conditional formatting tags:

<docAssign var='i' expr="3"/>

<docIf cond='i>2'>

 <para style="normal">The value of i is greater than 2</para>

 <docElse/>

 <para style="normal">The value of i is less than or equal to 2</para>

</docIf>

<docWhile cond='i'>

 <docPara expr='i' format='The value of i is %(__expr__)d'/>

 <docExec stmt='i-=1'/>

</docWhile>

results in the output:

The value of i is greater than 2
The value of i is 3
The value of i is 2
The value of i is 1

As an example of a practical use of conditional formatting, supposing you wanted all your documents to be a
certain number of pages. You could use the value of doc.page to decide whether to include or exclude an extern-
al 'filler' pdf in your output, and so pad the size of your document:

<docIf cond="doc.page == 3">

 <includePdfPages filename="fillerpage.pdf" pages="1" leadingFrame="yes"/>

</docIf>

11.5. Reference

Conditional formatting is implemented with the following tags:

<docAssign var='' expr=''>
assigns the value of 'expr' to 'var', eg to make i=3 : <docAssign var='i' expr='3'/>

<docExec stmt=''>
executes the statement 'stmt', eg to subtract 1 from the value of i : <docExec stmt='i-=1'/>

<docPara expr='' format='' style=''>
creates a paragraph containing the value of 'expr'.

'format' is an optional attribute which can contain the value of 'expr' using the Python string formatting
conventions, eg "%(__expr__)s".

The 'style' attribute is optional.

eg: <docPara expr='i' format='The value of i is %(__expr__)d'
style="style.txt"/>

So if i=2, this results in the text "The value of i is 2"

<docAssert cond='' format=''>
raises an error containing the value of 'format' if 'cond' is false, eg:

eg: <docAssert cond='val', format="val is false" />

<docWhile cond=''>
<docIf cond=''>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 84

<docElse>
these tags allow flow control while or if the 'cond' attribute evaluates to true. See the example above.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 85

12. Printing
This chapter covers things you will need to know when creating documents for professional printing. Many de-
velopment projects start off targeting an electronic document, which users will either keep on disk, or print out
on an office or home printer. Once you start targeting professional printing presses, things get more complicated.
We have tried to write this in a manner accessible to developers with little prior knowledge of print; apologies to
professional printers for anything we have 'glossed over' too lightly! The topics covered in this chapter are...

Crop Marks

Bleed

CMYK colours

Overprint/knockout control

Colour separations

Pagination

12.1. Crop Marks

The first difference is the size of the page. Let's say you are in Europe or Asia and have been creating A4 elec-
tronic documents from a web site using ReportLab. You then need to produce a different version of the same
document for professional printing. The printer wants to be given a slightly larger document, with lines pointing
at the corners of the A4 area. They will often be printing on a much larger sheet or roll of paper, and cutting it af-
terwards.

To automatically create crop marks, use the 'useCropMarks' attribute of the <docinit> tab. This will enlarge
the underlying page and draw the needed marks.

<docinit useCropMarks="1"/>

The intent is that it's reasonable easy now to have a single template which generates print and web versions of
the same document, wrapping an <if> statement around the extra attribute in your favourite templating system,
without needing to recalculate all the frame and graphics positions for every element on the page.

There is also a separate <cropMarks> tag which you can use within the <docinit> tag, if you wish to
modify the page size increase, colour, length, dash pattern and so on for the crop marks; however, we've found
the defaults to work fine.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 86

12.2. Bleed

Following on from the above, remember that printers often cut the paper to size. In addition, if they are creating
a booklet, they sometimes have to allow for the thickness of inner pages, so they need a little flexibility in where
to make the cut. If you have a design with solid colour 'straight to the edge' of the page, cutting can sometimes
leave a very fine white line where the colour runs out. Therefore, when a designer wants an area of colour to go
'straight to the edge', they work on a slightly larger page size, and allow the colour to overflow or 'bleed out'. In
general printers often ask for at least 3mm of bleed, or about 8 points. So, if you needed to draw a blue back-
ground on an A4 sized page (595x842 points), you would be well advised to draw the rectangle from x=-10 to
x=+605 - ten points bigger than needed. This will be completely invisible to an end user in a document created
for the web; but when you turn on crop marks and the page is enlarged, it will be visible.

There are no features in RML to automatically detect areas of colour near the edge of the page and 'add bleed';
it's your job to do it.

This also applies to bitmap images. If an image runs to the edge of the page, it needs to be sized to very slightly
overflow so that it can be cut without risking a white edge.

12.3. CMYK Colours

For professional presses, colours need to be specified either as CMYK, or as 'spot colours' such as those in the
Pantone Color Matching System. The CMYK process is a method of printing colour by using four inks - cyan,
magenta, yellow, and black. White is the absence of any colour. The Pantone system is a popular 'spot colour'
system which describes a set of completely standardized colours, allowing different manufacturers in different
locations to ensure that their colours match.

The majority of printed material is produced using the CMYK process. Many Pantone colours have good, well-
known CMYK equivalents.

RML allows you to specify colours as CMYK or by spot name, and also provides a mechanism for ensuring that
your document sticks to a particular set of colour definition types.

Starting in ReportLab 2.5, a colorSpace attribute can be defined in the <document> tag. This is a declaration
of your intent, and it lets us carry out some useful checks on your behalf. It will raise an error if you accidentally
use a colour that is not allowed in your colorSpace. Then, to declare a CMYK colour, use the <color> tag,
within the <docinit> section at the top:

<document filename="test_045_separations.pdf" invariant="1" colorSpace="CMYK">

<docinit>

 <color id="BLUE" CMYK="[1,0.67,0,0.23]"/>

 <color id="CYAN" CMYK="[1,0,0,0]"/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 87

</docinit>

Note that each colour component ranges from 0 to 1, not 0 to 100; you can use any floating point number in
between. Designers tend to think in terms of 0-100, but we have chosen to follow the PDF specification.

The 'id' is a string you specify. You will then be able to refer to these colours by name elsewhere in a document -
for example, you can then set a table cell background or paragraph style to be "BLUE".

The colorSpace attribute is particularly important when dealing with blacks. Many objects in our framework
have a default colour of black, and this is an RGB black 'under the hood'. If you set the colorSpace, our frame-
work will 'auto-convert' blacks for you; thus if a table's gridlines or a chart axis is normally drawn in black or a
shade of grey (implemented originally as RGB), it will be autoconverted to CMYK black or grey. Many printing
presses are able to handle RGB and autoconvert blacks these days, but printers will appreciate it if the PDFs are
pure CMYK as it won't raise alarms in their proofing tools.

12.4. Images in CMYK documents

Most bitmap images use an RGB colour model. We do NOT yet have safeguards to check images that you in-
clude in a CMYK document - the colorSpace checks won't warn you. We might add this checking in a future
version. If you are working with a limited number of images, the best approach is to use a professional tool like
Photoshop to create CMYK versions of those images, and check you are happy with the colours when printed.

Printers can often handle RGB images in a print job, but it's best to check with them first

12.5. Overprint and knockout control

When you create a document with two colours layered on top of one another, there are different ways to combine
them. The two alternatives are known as "overprint" and "knockout". Non-primary CMYK colours are, of
course, already implemented with a mix of up to four inks. A problem arises when you decide to stack two col-
ours on top of each other. Imagine you have a red and a blue CMYK colour which are each made up of, say,
60% black (the K in CMYK), and you want to draw one on top of the other. Should the software 'merge the col-
ours'? It can't achieve 120% coverage with the black. So, a decision is needed. Either the topmost colour 'knocks
out' and replaces anything drawn underneath it, or it 'overprints', allowing the colours to mix, in a manner similar
to transparency.

When working with separated colours (see below), the printing mechanics are a little different as each colour is
really a bottle of ink; but again, a statement of intent is needed when they overlap - does the top colour replace
what's underneath, or allow both to be laid down on the page?

The overprint-versus-knockout choice is rarely used, and works in slightly different ways for CMYK and for
separated colours - see the section below. Designers will know when they need it, and the developer merely
needs to set a flag.

Some PDF viewing software can simulate this effect on screen (Adobe Reader is one of them); it's necessary to
go into the preferences and check a box to see how the document would appear when printed. The default for is
usually to for the topmost colour to knock out the colour underneath.

<overprint mode="overprint"> turns on overprint for the drawing operations that follow. You can
then set this property to its original value with <overprint mode="knockout"> when you want to go
back into the default knock-out mode.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 88

The sample first example above shows cyan, magenta and yellow circles overlapping one another, set to over-
print and rendered in Acrobat Professional. Without overprint set in the second example, the inks do not mix on
top of each other. Instead, the circles on top knock-out the areas that they cover underneath.

12.6. Colour separations

When a PDF document is printed professionally, layers of coloured ink (plates) will be printed one at a time on
top of each other, laying down microscopic dots on different angled paths so that more than one colour can be
visible. The process colours (CMYK) will normally have a plate each for full-colour printing, but you can define
your own spot colour plates to be printed with a specialist "bucket of ink". One common use is for companies to
have completely standardised colours in their corporate literature, and to be able to print with just 3 plates in-
stead of the usual 4, which saves money and increases consistency. Another case is using metallic foils or fluor-
escent paints to enhance areas of your publication, so you might use extra spot colours as well as the CMYK
ones. Bear in mind that spot colour inks are usually opaque.

We mentioned above that a colorSpace attribute can be defined in the <document> tag. There are two more of
these "color spaces" which will be useful for those who are going to use spot colours: 'SEP' will only let you use
spot colours you define, and 'SEP_CMYK' will let you define spot colours to use along with the normal CMYK
process colours.

<document filename="test_045_separations.pdf" invariant="1" colorSpace="SEP">

If using SEP_CMYK, our framework will again 'auto-convert' blacks for you; thus if a table's gridlines or a chart
axis is normally drawn in black or a shade of grey (implemented originally as RGB), it will be autoconverted to
CMYK black or grey.

An equivalent CMYK colour value needs to be supplied along with a spot name for each printing plate. The
CMYK values are usually just to provide an on screen representation and do not need to be accurate, more im-
portant is the spot name which is a string that printers can identify the ink such as 'PANTONE 288 CV' or
'PMS_288'. Your printer may advise you on what spot names to use.

You will need to define your spot colours in the <docinit> section of your document. The 'id' is what you will
use later in the document to refer to that colour, 'CMYK' allows you to see an approximation of your colour in a
PDF reader, 'spotName' is how the printer will identify which ink to use for the plate. There is also an optional
'density' attribute which allows you to print with a thinner (or half-tone) layer of ink. If you set a density lower
than 1.0, you don't need to fiddle with the CMYK values for on-screen preview; we do that for you.

<document filename="test_045_separations.pdf" invariant="1" colorSpace="SEP">

<docinit>

 <color id="BLACK" CMYK="[0,0,0,1]"/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 89

 <color id="BLUE" CMYK="[1,0.67,0,0.23]" spotName="PANTONE 288 CV"/>

 <color id="BLUE75" CMYK="[1,0.67,0,0.23]" spotName="PANTONE 288 CV" density=".75"/>

</docinit>

If you have access to Adobe Acrobat Professional or other print pre-flight tool you will be able to preview each
of the plates separately and the inks that are used.

The overprint tag is perhaps even more useful when working with spot colours; for example, we have worked
with pie charts where the overall document was limited to black and a specific Pantone blue, and the designer
was able to create some new tints by stacking the blue and black on top of each other.

12.7. Pagination

A document that is intended to be printed as a bound booklet on a press must always have a page count that is a
multiple of four. Even with a different binding technique, documents laid out for print may make use of left and
right facing pages which "go together". RML documents with dynamic content will in many cases be of highly
variable length, and not guided by the designer's "common sense".

It is possible to use the conditional formatting tags in RML to add extra pages and pad out your document to the
required length as necessary. For example, we maintain one solution which has a number of optional half-page
and full-page advertisements which can be used to ensure the right pagination occurs. See the 'Conditional
Formatting' chapter of this guide for more information on this technique.

12.8. More information

We manage a number of solutions which generate documents for professional printing, and have helped clients
achieve some interesting effects, but we have limited space here to discuss all of the techniques used. If you are a
commercial customer and are seeking to achieve something not documented here, please contact us and we will
be happy to assist further.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 90

Part III - Tables

13. Using tables

13.1. Block tables

If you are familiar with HTML, you will understand the basic tags for use with tables in RML. Just as in HTML,
you use a tag to tell rml2pdf that a table is on the way (in this case <blockTable>; rather than <table>), and
another one to end it. Within the <blockTable> and </blockTable> tags, <tr> and </tr> enclose the
rows (from Table Row); and within each table row, <td> and </td> enclose each individual cell (from Table
Data).

So, the simplest blockTable in RML will look something like this:

<blockTable>

 <tr>

 <td>This</td><td>is</td>

 </tr>

 <tr>

 <td>a</td><td>blockTable.</td>

 </tr>

</blockTable>

This produces a table that looks like this:

This is

a blockTable.

Figure 19: A very simple blockTable

In this short example, we are just using plain old vanilla text in the table cells. But we can do more.
<blocktable> allows you to use paragraphs and the <para> tag. This means that you can use bold, italics,
colors, fonts, greek... anything you can use in a paragraph. And you can use multiple paragraphs inside a table
cell.

This is a more complex
blockTable.

This is a more complex
blockTable.

This is a more com-
plex blockTable.

This is α more complex
blockTaβle.

Figure 20: A slightly more complex blockTable

The main thing that makes this slightly more complex than a very simple table is the fact that you must give
rowHeights and colWidths to the <blockTable> to use paras. This makes sense - paragraphs fit into
the available space on a page. In a table, they must fit into the available space in that cell. If you haven't defined
how high and wide that cell will be, then there is no way for rml2pdf to know how to make it flow in that cell. (If
you get an error message saying "Flowables cell can't have auto width", then this is the thing to check - you have
probably omitted the rowHeights or colWidths).

When you are using paragraphs inside a table, you must not put any text outside the <para>...</para>
tags. The only exception to this rule is whitespace - you can put spaces and tabs outside the <para> tag, but

RML User Guide Document generated on 2025/07/04 20:17:34

Page 91

nothing else.

One other thing to be aware of is that if you use a para inside a table, it will ignore the text attributes you have
used for that table and instead use the attributes for paragraphs. This can be a plus, (since it allows you to use
already defined paragraph styles) but can take you by surprise if weren't expecting it.

As an example, here is the RML that generated the above table:

<blockTable

 rowHeights="1.25cm,1.25cm"

 colWidths="4cm,4cm"

 >

 <tr>

 <td>

 <para>

 This is a more complex blocktable.

 </para>

 </td>

 <td>

 <para>

 This is a more <i>complex</i> blocktable.

 </para>

 </td>

 </tr>

 <tr>

 <td>

 <para>

 This is a more complex blockTable.

 </para>

 </td>

 <td>

 <para>

 This is <greek>a</greek> more <i>complex</i>

 blockta<greek>b</greek>le.

 </para>

 </td>

 </tr>

</blockTable>

13.2. Block table attributes

This is useful, but there's a lot more to blockTables than that! The actual <blockTable> tag can have a
number of optional attributes:

■ style
blockTables can have a style set in the stylesheet in the same way as paragraphs can. If you have set
a style for your blockTable, you can refer to it by name with this attribute and apply it to your table.
(More details on how to do it appear in the section on the <blockTableStyle> tag below).

■ colWidths
If you use this attribute, it takes a comma-separated list of the width of each column in your blockT-
able. This allows you to vary the widths to match the width of the content of each column. If you do
use it, you should be careful to make sure that there is one width given for every column in your table.

■ rowHeights
As colWidths is to columns, rowHeights is to rows. It also takes a comma-separated list, in this case for
the heights of the rows in your table.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 92

■ repeatRows
If you have a large table that splits over multiple pages, you may well want certain information appear-
ing on all of them. Column headers are one example of this sort of information. The repeatRows at-
tribute allows you to do this.

repeatRows takes a single number as an argument or a ',' separated list of numbers. In the case of a
single number the rows up to and including this row are repeated as "headers" on each section of the
table that appears on a new page. If a list of rows is given then this is a zero based list of rows to repeat.
So if the list (1,) is given then the first table header will have rows 0 & 1 and any succeeding split table
will have the original second row as header. This allows for the first appearance of a table to have addi-
tional rows which may be unwanted later.

13.3. Block table styles

blockTables are a flowable, so the actual <blockTable> tag will appear in the story section of your RML
document. You can use the <blockTableStyle> tag to set the appearance of your blockTable. This ap-
pears in the stylesheet section of your document, and can be used for more than one table. You can set up how
all the blockTables in your document will look in one blockTableStyle tag if you want.

The <blockTableStyle> tag is a container for a number of other tags, and needs to be paired with a termin-
al </blockTableStyle> tag. This works in the same way as <styleSheet></styleSheet>,
<pageGraphics></pageGraphics>, and other tags of that sort.

For all of the attributes in blockTableStyle, they refer to a square or rectangular "block" inside the table.
This can be as many or as few cells as you want - not necessarily a single cell. This "block" aspect to the attrib-
utes is reflected in their names, and gave the table style its name for consistency. (It was felt that since most of
these attributes started with "block...", the table tag should itself be called blockTable to keep things simple).

The way the block is described may seem unusual to you if you are not used to programming. The x and y co-
ordinates are still given as X,Y (or if you like "Row,Column", rather than the spreadsheet "A1" model), but the
numbering starts from 0 rather than 1. This makes the top left-hand cell (0,0). As well as this, the numbers may
also be negative. If this is the case, then rml2pdf will count backwards from the end of the last cell. So (-1,-1) is
the bottom right hand cell in a table, (-2,-2) is the one up and to the left of that, and so on.

The tags that blockTableStyle can contain are:

■ blockFont
blockfont sets the font to be used in a block of your table.
It has one mandatory attribute: name.
It has four optional attributes: size, leading, start and stop.

■ blockTextColor
This sets the color that will be used for the text in a block of your table.
It has one required attribute: colorName.
It has two optional attributes: start and stop.

■ blockLeading
This sets the leading that will be used for the text in a block of your table.
It has one required attribute: length.
It has two optional attributes: start and stop.

■ blockAlignment
This sets the alignment of the text in a block of your table.
It has one required attribute: value. (This can be LEFT, RIGHT, CENTER, or CENTRE).
It has two optional attributes: start and stop.

■ blockValign
This sets how the contents of a block of cells in your table are aligned in the vertical direction.
It has one required attribute: value. (This can be TOP, MIDDLE, or BOTTOM, and defaults to BOT-
TOM).

RML User Guide Document generated on 2025/07/04 20:17:34

Page 93

It has two optional attributes: start and stop.

■ blockLeftPadding
This sets the padding (i.e. blank space) between the contents of a cell and left-hand edge of the cell (for
a block of cells in your table).
It has one required attribute: length.
It has two optional attributes: start and stop.

■ blockRightPadding
This sets the padding between the contents of a cell and right-hand edge of the cell (for a block of cells
in your table).
It has one required attribute: length.
It has two optional attributes: start and stop.

■ blockBottomPadding
This sets the padding between the contents of a cell and bottom edge of the cell (for a block of cells).
It has one required attribute: length.
It has two optional attributes: start and stop.

■ blockTopPadding
This sets the padding between the contents of a cell and top edge of the cell (for a block of cells).
It has one required attribute: length.
It has two optional attributes: start and stop.

■ blockBackground
This sets the color to be used for the background for a block of cells in your table.
It has one required attribute: colorName.
It has two optional attributes: start and stop.

■ lineStyle
This allows you to use lines to border your table.
It has two required attributes: kind (with the options of GRID, BOX, OUTLINE, INNERGRID, LINE-
BELOW, LINEABOVE, LINEBEFORE and LINEAFTER), and colorName (which must be the name
of a color).
It has three optional attributes: thickness, start and stop.

■ roundedCorners
This allows you to specify rounded corners for your table.
It has one optional attribute: radii which takes a string value "none" or a comma separated list of
numbers eg "5,5,0,0" representing the top left, top right, bottom left and bottom right corner radii.
A radius of 0 is square and missing trailing values are assumed 0.
The radius actually used will be the minimum of the corner cell width/height and the requested radius.
Border lines passing through the exact corners are curved an octant at each corner.

13.4. More about block tables

A few final things to be aware about when using tables: in RML, table cells (as contained by the <td> and
</td> tags) can only contain one of two different sets of data. Either a table cell can contain string forms (text
and the <getName> and <pageNumber> tags) or it can contain a sequence of flowables (tags such as
<pre>, <para> and the various heading tags). It is not possible to mix both of these forms in the same cell
(though you can mix them in the same table).

Putting strings into table cells is quicker than using paragraphs. Paragraphs need to work out when to 'wrap' text,
strings don't. So you should avoid using paragraphs inside tables unless you really need to (or you don't mind
things slowing down).

When you are doing a big database report, wherever possible use separate smaller tables to contain parts of your
data rather than one huge table. If you don't use many 'mini-tables' to contain small groups of rows but instead
decide to do a big 1,000-row table, you will notice a significant loss of speed in the generation of your output
PDF.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 94

This also makes it much easier to design complex grouped reports; for each group header, footer or detail block
you can design one table style and keep them all independent of each other.

13.5. Using block table styles

Now that we have seen what the blockTable's attributes are, and seen a summary of
<blockTableStyle>, here are some examples that show you how they can be used together.

The following few pages show a number of examples of blockTables. Each one shows a page with the RML
listing, followed by a separate page with the result of that table. Each listing contains comments to point out
what each tag involved with the blockTable is doing.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 95

1.1 Example 10 - Colors and fonts in tables

This example show various ways of setting the text color (blockTextColor), font (blockFont) and back-
ground color (blockBackground) for regions in a blockTable.

Notice the various ways of specifying a region within the table. Also notice the way we have defined heights for
the rows and widths for the columns in the blocktable tag.

EXAMPLE 10

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>
<!DOCTYPE document SYSTEM "../rml.dtd">
<document filename="example_10.pdf">

<template>
 <pageTemplate id="main">
 <pageGraphics>

 </pageGraphics>
 <frame id="first" x1="72" y1="72" width="451" height="698"/>
 </pageTemplate>
</template>

<stylesheet>
 <blockTableStyle id="myBlockTableStyle">
 <!-- This sets a font for every cell from the start of the
 second row down to the bottom right hand corner -->
 <blockFont name="Courier-Bold" start="0,1" stop="-1,-1"/>
 <!-- This sets a font for the first row -->
 <blockFont name="Helvetica-BoldOblique" size="24" start="0,0" stop="3,0"/>

 <!-- This sets a textColor for all the text in the table -->
 <blockTextColor colorName="black"/>

 <!-- This sets a textColor for the first row -->
 <!-- (Since it comes after the above setting, -->
 <!-- it overides it for this row) -->
 <blockTextColor colorName="white" start="0,0" stop="3,0"/>

 <!-- This sets a textColor a column - also overiding -->
 <!-- the first textColor setting for this row -->
 <blockTextColor colorName="blue" start="1,1" stop="1,6"/>

 <!-- This sets a background color for the first row -->
 <blockBackground colorName="red" start="0,0" stop="3,0"/>

 <!-- This sets a background color for the rest of the table -->
 <blockBackground colorName="cornsilk" start="0,1" stop="-1,-1"/>

 <!-- This sets a background color for an individual cell -->
 <!-- This has to go AFTER the above blockBackground, -->
 <!-- otherwise it would be overpainted by the cornsilk color -->
 <blockBackground colorName="lightcoral" start="3,3" stop="3,3"/>

 </blockTableStyle>
</stylesheet>

<story>
 <title>Example 10 - colors and fonts in tables</title>
 <spacer length = "1cm"/>

 <blockTable style="myBlockTableStyle"
 rowHeights="3.5cm,2cm,2cm,2cm,2cm,2cm,2cm"
 colWidths="4cm,4cm,4cm,4cm"
 >
 <tr><td>Cell 0,0</td><td>Cell 1,0</td><td>Cell 2,0</td><td>Cell 3,0</td></tr>
 <tr><td>Cell 0,1</td><td>Cell 1,1</td><td>Cell 2,1</td><td>Cell 3,1</td></tr>
 <tr><td>Cell 0,2</td><td>Cell 1,2</td><td>Cell 2,2</td><td>Cell 3,2</td></tr>
 <tr><td>Cell 0,3</td><td>Cell 1,3</td><td>Cell 2,3</td><td>Cell 3,3</td></tr>
 <tr><td>Cell 0,4</td><td>Cell 1,4</td><td>Cell 2,4</td><td>Cell 3,4</td></tr>
 <tr><td>Cell 0,5</td><td>Cell 1,5</td><td>Cell 2,5</td><td>Cell 3,5</td></tr>
 <tr><td>Cell 0,6</td><td>Cell 1,6</td><td>Cell 2,6</td><td>Cell 3,6</td></tr>
 </blockTable>

</story>

</document>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 96

Example 10 - colors and fonts in tables

Cell 0,0 Cell 1,0 Cell 2,0 Cell 3,0

Cell 0,1 Cell 1,1 Cell 2,1 Cell 3,1

Cell 0,2 Cell 1,2 Cell 2,2 Cell 3,2

Cell 0,3 Cell 1,3 Cell 2,3 Cell 3,3

Cell 0,4 Cell 1,4 Cell 2,4 Cell 3,4

Cell 0,5 Cell 1,5 Cell 2,5 Cell 3,5

Cell 0,6 Cell 1,6 Cell 2,6 Cell 3,6

Figure 21: Output table from EXAMPLE 10

RML User Guide Document generated on 2025/07/04 20:17:34

Page 97

1.2 Colors and fonts in table cells

As an alternative to specifying cell properties using block table styles, RML also allows some cell styles to be
specified as attributes of the <td> tag.

<blockTable colWidths="5cm,5cm" style="myBlockTableStyle1">

 <tr><td>fontName</td><td fontName="Courier">Courier</td></tr>

 <tr><td>fontName</td><td fontName="Helvetica">Helvetica</td></tr>

 <tr><td>fontSize</td><td fontSize="8">8</td></tr>

 <tr><td>fontSize</td><td fontSize="14">14</td></tr>

 <tr><td>fontColor</td><td fontColor="red">red</td></tr>

 <tr><td>fontColor</td><td fontColor="blue">blue</td></tr>

 <tr><td>leading</td><td leading="16">leading

 is

 16</td></tr>

 <tr><td>leading</td><td leading="12">leading

 is

 12</td></tr>

 <tr><td>leftPadding</td><td leftPadding="10">10</td></tr>

 <tr><td>leftPadding</td><td leftPadding="16">16</td></tr>

 <tr><td>rightPadding</td><td rightPadding="10" align="right">10</td></tr>

 <tr><td>rightPadding</td><td rightPadding="24" align="right">24</td></tr>

 <tr><td>topPadding</td><td topPadding="10">10</td></tr>

 <tr><td>topPadding</td><td topPadding="24">24</td></tr>

 <tr><td>bottomPadding</td><td bottomPadding="10">10</td></tr>

 <tr><td>bottomPadding</td><td bottomPadding="24">24</td></tr>

 <tr><td>background</td><td background="pink">pink</td></tr>

 <tr><td>background</td><td background="lightblue">lightblue</td></tr>

 <tr><td>align</td><td align="left">left</td></tr>

 <tr><td>align</td><td align="center">center</td></tr>

 <tr><td>align</td><td align="right">right</td></tr>

 <tr><td>-

 vAlign

 -</td><td vAlign="top">top</td></tr>

 <tr><td>-

 vAlign

 -</td><td vAlign="middle">middle</td></tr>

 <tr><td>-

 vAlign

 -</td><td vAlign="bottom">bottom</td></tr>

</blockTable>

produces

fontName Courier

fontName Helvetica

fontSize 8

fontSize 14
fontColor red

fontColor blue

RML User Guide Document generated on 2025/07/04 20:17:34

Page 98

leading leading

is

16

leading leading
is
12

leftPadding 10

leftPadding 16

rightPadding 10

rightPadding 24

topPadding
10

topPadding

24

bottomPadding 10

bottomPadding 24

background pink

background lightblue

align left

align center

align right

-
vAlign
-

top

-
vAlign
-

middle

-
vAlign
- bottom

Figure 22: Output table from EXAMPLE 10

RML User Guide Document generated on 2025/07/04 20:17:34

Page 99

1.3 Example 11 - lines and alignment in tables

This example shows the various vertical and horizontal alignments you can give text in a table, as well as a few
ways to use lines.

EXAMPLE 11

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE document SYSTEM "../rml.dtd">

<document filename="example_11.pdf">

 <template>

 <pageTemplate id="main">

 <pageGraphics>

 </pageGraphics>

 <frame id="first" x1="72" y1="72" width="451" height="698"/>

 </pageTemplate>

 </template>

 <stylesheet>

 <blockTableStyle id="myBlockTableStyle">

 <!-- Set fonts -->

 <blockFont name="Courier-Bold" size="10" start="0,1" stop="-1,-1"/>

 <blockFont name="Helvetica-BoldOblique" size="10" start="0,0" stop="3,0"/>

 <!-- This sets a textColor for all the text in the table -->

 <blockTextColor colorName="black"/>

 <!-- Another example of blockTextColor -->

 <blockTextColor colorName="green" start="2,2" stop="3,3"/>

 <!-- This sets a blockAlignment for the whole table -->

 <blockAlignment value="CENTER"/>

 <!-- These overrides the above -->

 <blockAlignment value="RIGHT" start="3,0" stop="3,-1"/>

 <blockAlignment value="LEFT" start="0,1" stop="0,-1"/>

 <!-- This sets the vertical alignment for one row -->

 <blockValign value="TOP" start="0,0" stop="-1,0"/>

 <!-- This sets the vertical alignment for one cell -->

 <blockValign value="MIDDLE" start="2,2" stop="2,2"/>

 <!-- Use of linestyles -->

 <lineStyle kind="GRID" colorName="silver"/>

 <lineStyle kind="LINEBELOW" colorName="orangered" start="0,0"

 stop="-1,0" thickness="5"/>

 <lineStyle kind="LINEAFTER" colorName="maroon" start="1,1"

 stop="1,6" thickness="1"/>

 </blockTableStyle>

 </stylesheet>

 <story>

 <title>Example 11 - lines and alignment in tables</title>

 <spacer length="1cm"/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 100

 <blockTable style="myBlockTableStyle"

 rowHeights="2cm,2cm,2cm,2cm,2cm,2cm,2cm"

 colWidths="4cm,3cm,3cm,4cm"

 >

 <tr>

 <td>(a=LEFT)(VA=TOP)</td>

 <td>(VA=TOP)</td>

 <td>(VA="TOP")</td>

 <td>(a=RIGHT)(VA=TOP)</td>

 </tr>

 <tr>

 <td>(a=LEFT)</td>

 <td>1,1</td>

 <td>Cell 2,1</td>

 <td>(a=RIGHT)</td>

 </tr>

 <tr>

 <td>(a=LEFT)</td>

 <td>1,2</td>

 <td>(VA=MIDDLE)</td>

 <td>(a=RIGHT)</td>

 </tr>

 <tr>

 <td>(a=LEFT)</td>

 <td>1,3</td>

 <td>(VA=MIDDLE)</td>

 <td>(VA=MDL)(a=RIGHT)</td>

 </tr>

 <tr>

 <td>(a=LEFT)</td>

 <td>1,4</td>

 <td>2,4</td>

 <td>(a=RIGHT)</td>

 </tr>

 <tr>

 <td>(a=LEFT)</td>

 <td>1,5</td>

 <td>2,5</td>

 <td>(a=RIGHT)</td>

 </tr>

 <tr>

 <td>(a=LEFT)</td>

 <td>1,6</td>

 <td>2,6</td>

 <td>(a=RIGHT)</td>

 </tr>

 </blockTable>

 <spacer length="15"/>

 <para>a=value for <i>blockAlignment</i></para>

 <para>VA=value for <i>blockValign</i></para>

 <para><i>MDLE=MIDDLE for VA in cells 3,2 and 3,3</i></para>

 </story>

</document>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 101

Example 11 - lines and alignment in tables

(a=LEFT)(VA=TOP) (VA=TOP) (VA="TOP") (a=RIGHT)(VA=TOP)

(a=LEFT) 1,1 Cell 2,1 (a=RIGHT)

(a=LEFT) 1,2

(VA=MIDDLE) (VA=MDL)(a=RIGHT)

(a=LEFT) 1,3

(VA=MIDDLE) (VA=MDL)(a=RIGHT)

(a=LEFT) 1,4 2,4 (a=RIGHT)

(a=LEFT) 1,5 2,5 (a=RIGHT)

(a=LEFT) 1,6 2,6 (a=RIGHT)

Figure 23: Output table from EXAMPLE 11

a=value for blockAlignment

VA=value for blockValign

MDLE=MIDDLE for VA in cells 3,2 and 3,3

RML User Guide Document generated on 2025/07/04 20:17:34

Page 102

1.4 Example 12 - images and padding in tables

This example shows images in a table and the way to use the various padding attributes.

For comparison purposes:
The cells that contain pictures in this table are all 166 pixels in height and 161 pixels in width.
Where padding is used, it has a value of 20 pixels horizontally or 40 pixels vertically.

EXAMPLE

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE document SYSTEM "rml.dtd">

<document filename="example_12.pdf">

 <template>

 <pageTemplate id="main">

 <pageGraphics>

 </pageGraphics>

 <frame id="first" x1="72" y1="72" width="451" height="698"/>

 </pageTemplate>

 </template>

 <stylesheet>

 <blockTableStyle id="myBlockTableStyle">

 <blockBackground colorName="silver" start="0,0" stop="-1,0"/>

 <blockBackground colorName="darkslategray" start="0,1" stop="-1,1"/>

 <blockBackground colorName="silver" start="0,2" stop="-1,2"/>

 <blockBackground colorName="darkslategray" start="0,3" stop="-1,3"/>

 <blockBackground colorName="silver" start="0,4" stop="-1,4"/>

 <blockBackground colorName="darkslategray" start="0,5" stop="-1,5"/>

 <blockAlignment value="CENTER"/>

 <blockValign value="MIDDLE"/>

 <!-- Set fonts -->

 <blockFont name="Helvetica-BoldOblique" size="10"/>

 <!-- set the left and right padding for cells in first and -->

 <!-- third columns remember, cell numbering starts from ZERO, not ONE -->

 <blockLeftPadding length="20" start="0,0" stop="0,-1"/>

 <blockRightPadding length="20" start="2,0" stop="2,-1"/>

 <!-- set the top and bottom padding for cells in first and third rows -->

 <blockBottomPadding length="40" start="0,0" stop="-1,0"/>

 <blockTopPadding length="40" start="0,2" stop="-1,2"/>

 <!-- set the top and bottom padding for the last row -->

 <blockBottomPadding length="40" start="-1,4" stop="-1,4"/>

 <blockTopPadding length="40" start="0,4" stop="0,4"/>

 <!-- Use of linestyles -->

 <lineStyle kind="GRID" colorName="darkblue"/>

 </blockTableStyle>

 <paraStyle name="paddingTableStyle"

 fontName="Helvetica-BoldOblique"

 fontSize="10"

 textColor="white"

RML User Guide Document generated on 2025/07/04 20:17:34

Page 103

 alignment="CENTER"

 />

 </stylesheet>

 <story>

 <title>Example 12 - images and padding in tables</title>

 <spacer length="1cm"/>

 <blockTable style="myBlockTableStyle"

 rowHeights="166,28,166,28,166,28"

 colWidths="161,161,161"

 >

 <tr>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 104

 </tr>

 <tr>

 <td>

 <para style="paddingTableStyle">

 blockLeftPadding with blockBottomPadding

 </para>

 </td>

 <td>

 <para style="paddingTableStyle">

 just blockBottomPadding

 </para>

 </td>

 <td>

 <para style="paddingTableStyle">

 blockRightPadding with blockBottomPadding

 </para>

 </td>

 </tr>

 <tr>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

RML User Guide Document generated on 2025/07/04 20:17:34

Page 105

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 </tr>

 <tr>

 <td>

 <para style="paddingTableStyle">

 blockLeftPadding with blockTopPadding

 </para>

 </td>

</td>

<td>

 <para style="paddingTableStyle">

 just blockTopPadding

 </para>

</td>

<td>

 <para style="paddingTableStyle">

 blockRightPadding with blockTopPadding

 </para>

</td>

</tr>

<tr>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 <td>

 <illustration width="141" height="90">

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

 <td>

 <illustration width="141" height="90">

RML User Guide Document generated on 2025/07/04 20:17:34

Page 106

 <image file="images/replogo.gif"

 x="0" y="0"

 width="141" height="90"/>

 <stroke color="deepskyblue"/>

 <lineMode width="3"/>

 <lines>

 0 0 141 0

 141 0 141 90

 141 90 0 90

 0 90 0 0

 </lines>

 </illustration>

 </td>

</tr>

<tr>

 <td>

 <para style="paddingTableStyle">

 blockLeftPadding with blockTopPadding

 </para>

 </td>

 <td>

 <para style="paddingTableStyle">

 no padding

 </para>

 </td>

 <td>

 <para style="paddingTableStyle">

 blockRightPadding with blockBottomPadding

 </para>

 </td>

</tr>

</blockTable>

</story>

</document>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 107

Example 12 - images and padding in tables

blockLeftPadding with
blockBottomPadding

just blockBottomPadding
blockRightPadding with

blockBottomPadding

blockLeftPadding with
blockTopPadding

just blockTopPadding
blockRightPadding with

blockTopPadding

blockLeftPadding with
blockTopPadding

no padding
blockRightPadding with

blockBottomPadding

Figure 24: Output from EXAMPLE 12

RML User Guide Document generated on 2025/07/04 20:17:34

Page 108

Appendix A - Colors recognized by RML
In this table, the "Color" column gives the name of the color, as recognised in the HTML standard and RML. The hexadecimal number in the

"Hex Value" column corresponds to the red, green and blue (RGB) components in the color - the first two digits represent red, the next two

green and the last two the blue. (The "0x" just shows it's a hexadecimal number).

aliceblue Hex: 0xF0F8FFText 123

antiquewhite Hex: 0xFAEBD7Text 123

aqua Hex: 0x00FFFFText 123

aquamarine Hex: 0x7FFFD4Text 123

azure Hex: 0xF0FFFFText 123

beige Hex: 0xF5F5DCText 123

bisque Hex: 0xFFE4C4Text 123

black Hex: 0x000000Text 123

blanchedalmond Hex: 0xFFEBCDText 123

blue Hex: 0x0000FFText 123

blueviolet Hex: 0x8A2BE2Text 123

brown Hex: 0xA52A2AText 123

burlywood Hex: 0xDEB887Text 123

cadetblue Hex: 0x5F9EA0Text 123

chartreuse Hex: 0x7FFF00Text 123

chocolate Hex: 0xD2691EText 123

coral Hex: 0xFF7F50Text 123

cornflower Hex: 0x6495EDText 123

cornsilk Hex: 0xFFF8DCText 123

crimson Hex: 0xDC143CText 123

cyan Hex: 0x00FFFFText 123

darkblue Hex: 0x00008BText 123

darkcyan Hex: 0x008B8BText 123

darkgoldenrod Hex: 0xB8860BText 123

darkgray Hex: 0xA9A9A9Text 123

darkgreen Hex: 0x006400Text 123

darkkhaki Hex: 0xBDB76BText 123

darkmagenta Hex: 0x8B008BText 123

darkolivegreen Hex: 0x556B2FText 123

darkorange Hex: 0xFF8C00Text 123

darkorchid Hex: 0x9932CCText 123

RML User Guide Document generated on 2025/07/04 20:17:34

Page 109

darkred Hex: 0x8B0000Text 123

darksalmon Hex: 0xE9967AText 123

darkseagreen Hex: 0x8FBC8BText 123

darkslateblue Hex: 0x483D8BText 123

darkslategray Hex: 0x2F4F4FText 123

darkturquoise Hex: 0x00CED1Text 123

darkviolet Hex: 0x9400D3Text 123

deeppink Hex: 0xFF1493Text 123

deepskyblue Hex: 0x00BFFFText 123

dimgray Hex: 0x696969Text 123

dodgerblue Hex: 0x1E90FFText 123

firebrick Hex: 0xB22222Text 123

floralwhite Hex: 0xFFFAF0Text 123

forestgreen Hex: 0x228B22Text 123

fuchsia Hex: 0xFF00FFText 123

gainsboro Hex: 0xDCDCDCText 123

ghostwhite Hex: 0xF8F8FFText 123

gold Hex: 0xFFD700Text 123

goldenrod Hex: 0xDAA520Text 123

gray Hex: 0x808080Text 123

grey (same as 'gray') Hex: 0x808080Text 123

green Hex: 0x008000Text 123

greenyellow Hex: 0xADFF2FText 123

honeydew Hex: 0xF0FFF0Text 123

hotpink Hex: 0xFF69B4Text 123

indianred Hex: 0xCD5C5CText 123

indigo Hex: 0x4B0082Text 123

ivory Hex: 0xFFFFF0Text 123

khaki Hex: 0xF0E68CText 123

lavender Hex: 0xE6E6FAText 123

lavenderblush Hex: 0xFFF0F5Text 123

lawngreen Hex: 0x7CFC00Text 123

lemonchiffon Hex: 0xFFFACDText 123

lightblue Hex: 0xADD8E6Text 123

RML User Guide Document generated on 2025/07/04 20:17:34

Page 110

lightcoral Hex: 0xF08080Text 123

lightcyan Hex: 0xE0FFFFText 123

lightgoldenrodyellow Hex: 0xFAFAD2Text 123

lightgreen Hex: 0x90EE90Text 123

lightgrey Hex: 0xD3D3D3Text 123

lightpink Hex: 0xFFB6C1Text 123

lightsalmon Hex: 0xFFA07AText 123

lightseagreen Hex: 0x20B2AAText 123

lightskyblue Hex: 0x87CEFAText 123

lightslategray Hex: 0x778899Text 123

lightsteelblue Hex: 0xB0C4DEText 123

lightyellow Hex: 0xFFFFE0Text 123

lime Hex: 0x00FF00Text 123

limegreen Hex: 0x32CD32Text 123

linen Hex: 0xFAF0E6Text 123

magenta Hex: 0xFF00FFText 123

maroon Hex: 0x800000Text 123

mediumaquamarine Hex: 0x66CDAAText 123

mediumblue Hex: 0x0000CDText 123

mediumorchid Hex: 0xBA55D3Text 123

mediumpurple Hex: 0x9370DBText 123

mediumseagreen Hex: 0x3CB371Text 123

mediumslateblue Hex: 0x7B68EEText 123

mediumspringgreen Hex: 0x00FA9AText 123

mediumturquoise Hex: 0x48D1CCText 123

mediumvioletred Hex: 0xC71585Text 123

midnightblue Hex: 0x191970Text 123

mintcream Hex: 0xF5FFFAText 123

mistyrose Hex: 0xFFE4E1Text 123

moccasin Hex: 0xFFE4B5Text 123

navajowhite Hex: 0xFFDEADText 123

navy Hex: 0x000080Text 123

oldlace Hex: 0xFDF5E6Text 123

olive Hex: 0x808000Text 123

RML User Guide Document generated on 2025/07/04 20:17:34

Page 111

olivedrab Hex: 0x6B8E23Text 123

orange Hex: 0xFFA500Text 123

orangered Hex: 0xFF4500Text 123

orchid Hex: 0xDA70D6Text 123

palegoldenrod Hex: 0xEEE8AAText 123

palegreen Hex: 0x98FB98Text 123

paleturquoise Hex: 0xAFEEEEText 123

palevioletred Hex: 0xDB7093Text 123

papayawhip Hex: 0xFFEFD5Text 123

peachpuff Hex: 0xFFDAB9Text 123

peru Hex: 0xCD853FText 123

pink Hex: 0xFFC0CBText 123

plum Hex: 0xDDA0DDText 123

powderblue Hex: 0xB0E0E6Text 123

purple Hex: 0x800080Text 123

red Hex: 0xFF0000Text 123

rosybrown Hex: 0xBC8F8FText 123

royalblue Hex: 0x4169E1Text 123

saddlebrown Hex: 0x8B4513Text 123

salmon Hex: 0xFA8072Text 123

sandybrown Hex: 0xF4A460Text 123

seagreen Hex: 0x2E8B57Text 123

seashell Hex: 0xFFF5EEText 123

sienna Hex: 0xA0522DText 123

silver Hex: 0xC0C0C0Text 123

skyblue Hex: 0x87CEEBText 123

slateblue Hex: 0x6A5ACDText 123

slategray Hex: 0x708090Text 123

snow Hex: 0xFFFAFAText 123

springgreen Hex: 0x00FF7FText 123

steelblue Hex: 0x4682B4Text 123

tan Hex: 0xD2B48CText 123

teal Hex: 0x008080Text 123

thistle Hex: 0xD8BFD8Text 123

RML User Guide Document generated on 2025/07/04 20:17:34

Page 112

tomato Hex: 0xFF6347Text 123

turquoise Hex: 0x40E0D0Text 123

violet Hex: 0xEE82EEText 123

wheat Hex: 0xF5DEB3Text 123

white Hex: 0xFFFFFFText 123

whitesmoke Hex: 0xF5F5F5Text 123

yellow Hex: 0xFFFF00Text 123

yellowgreen Hex: 0x9ACD32Text 123

RML User Guide Document generated on 2025/07/04 20:17:34

Page 113

Appendix B - Glossary of terms and abbreviations

baseline
In typography, the imaginary line on which characters sit. The x-height of a font is measured from the baseline
to the top of a lowercase x. The descender, for those characters that have one, is defined as the portion of the
character that falls below the baseline.

Bezier curves
Named after the French mathematician Pierre Bézier, Bezier curves utilize at least three points to define a curve.
The endpoints are called the anchor points, while any other point is known as a node. The curves produced by
RML's <curves> tag are Bezier curves.

bitmap
A bitmap is a way of storing an image. In bitmaps, each pixel ("picture-cell") is stored as one or more bits of data
in a "map" consisting of rows and columns. This means that when you print them out at the size they were cre-
ated at they look fine, but shrinking or enlarging them leads to them looking blocky and ragged.
JPEG and GIF are both bitmapped graphics formats (as are BMP, PICT and PNG). You can use gifs and jpegs in
your RML document with the <image> tag.
see also "gif", "JPEG", "image"

Boolean
Named after the nineteenth-century mathematician George Boole, Boolean logic is a form of algebra in which all
values are reduced to either TRUE or FALSE (or 0 and 1).

CMYK
A way of specifying a color by its Cyan, Magenta, Yellow and Black ('Key') components. Usually used when re-
ferring to pigments - such as in printing.

DTD
Document Type Definition. A term from XML that refers to the file that defines the legal building blocks of an
XML document, and the permissible ways to structure it.

empty elements
"Empty" elements are those tags that don't have any content, and are closed with a "/>" at the end of the same
tag rather than having a separate closing tag. (e.g. <getName id="Header.Title"/> doesn't have a sep-
arate </getName> tag - the "/>" serves to close it so it doesn't need one). Empty elements are also sometimes
known as "singletons".

fill
In RML, the color that a graphic or text item is filled with (as opposed to that of its outline or stroke).

flowables
In RML, "flowables" are items which appear in a story (such as paragraph, spacer, and tables). Flowables are po-
sitioned in sequence running down a frame until there is no more room left in that frame, when they are placed in
the next frame (or on the next page if necessary). They can not be mixed with graphics.
Flowables include the following tags:
para, blockTable, title, h1, h2, h3, spacer, illustration, pre and plugInFlowable.
see also "graphics"

GIF
GIF (Graphics Interchange Format) is a bit-mapped graphics file format created by CompuServe in 1987. It is
still in common use on the World Wide Web and many other places today.
You can use gifs in your RML document with the image tag.
see also "bitmap", "JPEG", "image"

graphics
In RML, "graphics" are items which can appear inside the pageGraphics and illustration tags. Unlike
flowables, graphics are explicitly positioned on the page by co-ordinates. They can not be mixed with flowables.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 114

see also "flowables"

HTML
The Hyper-Text Markup Language. The language used for writing pages on the World Wide Web.

image
In RML, the "image" tag allows you to use existing graphics files in your document. Currently image supports
the GIF and JPEG formats - the two most common formats on the World Wide Web. Most paint applications
support both the GIF and JPEG standards.
see also "bitmap", "GIF", "JPEG"

JPEG
A lossy compression technique for color images created by the Joint Photographic Experts Group (JPEG). Better
for photos than the GIF format, it can use up to 24-bit color and reduce file sizes to about 5% of their normal
size. JPEG files are widely used on the World Wide Web and many other places.
(The JPEG format is sometimes known as JFIF, JFI, and JPG as well as JPEG).
You can use JPEG files in your RML document with the image tag.
see also "bitmap", "gif", "image"

jpg
See JPEG.

leading
Leading (pronounced "ledding") is the amount of vertical space allotted for a line of type - the distance between
the baseline of one line to the baseline of the next. The name comes from the way that printers used to use thin
strips of lead or brass to separate the lines of metal type.
In RML, leading can be supplied as an attribute for the para and paraStyle tags. It is expressed as the height
of the line plus the space between lines. So, for example, using a 12 point font with a leading of 18 gives you a
space between lines of 6 points.
You can also have negative leading. By giving a number smaller than the size of font you are using, you can ar-
range it so that the lines overlap each other.

orthogonal
An adjective from mathematics meaning "relating to or composed of right angles".
A non-orthogonal transformation is one which does not preserve right angles. skew is a non-orthogonal trans-
formation.

PDF
The Portable Document Format. A format created by Adobe, this is a standard for electronic documents which is
platform-independent due to the freely available Acrobat reader. The PDF file format is a complex indexed bin-
ary format, with a specification 600 pages long. (RML is much easier!)

RGB
A way of specifying a color by its Red, Green and Blue components. Usually used when referring to lights - such
as on a computer screen.

RML
Report Markup Language. An XML dialect, created by ReportLab, Inc, and and used by their software rml2pdf
to produce documents in PDF.

singletons
See "empty elements".

story
The part of an RML document where the main content of a document goes (if it uses the
"template/stylesheet/story" form). This is where text - split into paragraphs by <para> tags - is put.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 115

stroke
In RML, the color of the outline of a graphic or text item (as opposed to that of its inside or fill.)

stylesheet
This is an obligatory part of an RML document. It is where the styles for paragraphs and blockTables are
defined (though it can be empty).

template
In those RML documents that use the "template/stylesheet/story" form, this is the part of the document where
any headers, footers, or background graphic elements are defined.

vanilla
Plain, ordinary, or standard [from the default flavor of ice cream in the U.S.]
In RML, you can put in letters, numbers, and punctuation in places which allow you to use "vanilla text", but
tags such as <para> or are not allowed.

whitespace
For programmers, whitespace refers to all the characters that appear as blanks on your screen. This includes the
space and tab characters, linefeeds, carriage returns, and other more specialised characters.
For designers, whitespace is any areas on a page that aren't the content - the bits that are free of text or artwork.

XML
The Extensible Markup Language - a document processing standard set by the World Wide Web Consortium
(W3C) - the people who defined the standard for HTML.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 116

Appendix C - Letters used by the Greek tag

Greek Letter

α

β

χ

δ

ε

φ

γ

η

ι

ϕ

κ

λ

µ

ν

ο

π

θ

ρ

σ

τ

υ

ϖ

ω

ξ

ψ

ζ

RML Representation

<greek>a</greek>

<greek>b</greek>

<greek>c</greek>

<greek>d</greek>

<greek>e</greek>

<greek>f</greek>

<greek>g</greek>

<greek>h</greek>

<greek>i</greek>

<greek>j</greek>

<greek>k</greek>

<greek>l</greek>

<greek>m</greek>

<greek>n</greek>

<greek>o</greek>

<greek>p</greek>

<greek>q</greek>

<greek>r</greek>

<greek>s</greek>

<greek>t</greek>

<greek>u</greek>

<greek>v</greek>

<greek>w</greek>

<greek>x</greek>

<greek>y</greek>

<greek>z</greek>

Greek Letter

Α

Β

Χ

∆

Ε

Φ

Γ

Η

Ι

ϑ

Κ

Λ

Μ

Ν

Ο

Π

Θ

Ρ

Σ

Τ

Υ

ς

Ω

Ξ

Ψ

Ζ

RML Representation

<greek>A</greek>

<greek>B</greek>

<greek>C</greek>

<greek>D</greek>

<greek>E</greek>

<greek>F</greek>

<greek>G</greek>

<greek>H</greek>

<greek>I</greek>

<greek>J</greek>

<greek>K</greek>

<greek>L</greek>

<greek>M</greek>

<greek>N</greek>

<greek>O</greek>

<greek>P</greek>

<greek>Q</greek>

<greek>R</greek>

<greek>S</greek>

<greek>T</greek>

<greek>U</greek>

<greek>V</greek>

<greek>W</greek>

<greek>X</greek>

<greek>Y</greek>

<greek>Z</greek>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 117

Appendix D - Command reference

All attributes are optional unless otherwise specified.

document

<document

filename="myfile.pdf" string required

compression="0|1|default" PDF compression (default)

invariant="0|1|default" PDF invariance (default)

debug="0|1" Debug document production (0)

userPass="uuserpw" Encryption user password

ownerPass="ownerpw" Encryption owner password

encryptionStrength="128|40" Encryption strength optional

defaults to 128

permissions="print annotate..."Encryption permissions optional

allowed are print copy modify annotate

default is print

>

</document>

Above is the story based form for the document tag.
Encryption will only take place if a userPass is specified.

document

<document

filename="myfile.pdf" string required

>

<pageInfo>...</pageInfo> optional

<pageDrawing>...</pageDrawing> one or more

</document>

Above is the PageDrawing based form for the document tag.

The document tag is the root tag for RML docuoments. Every RML document must contain on and only one
document tag. There are two forms for a document: the story form and the pageDrawing form.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 118

docinit

<docinit

pageMode UseNone|UseOutlines|UseThumbs|FullScreen

pageLayout SinglePage|OneColumn|TwoColumnLeft|TwoColumnRight

useCropMarks (yes | no | 0 | 1 | true | false)

>

</docinit>

template

<template

pageSize="(8.5in, 11in)" pair of lengths

rotation="270" page angular orientation (multiple of 90, default 0)

firstPageTemplate="main" page template id

leftMargin="1in" length

rightMargin="1in" length

topMargin="1.5in" length

bottomMargin="1.5in" length

showBoundary="false" truth value

allowSplitting="true" truth value

title="my title" string

author="yours truly" string

>

<pageTemplate...> ...</pageTemplate> 1 or more

</template>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 119

stylesheet

<stylesheet>

<initialize>...</initialize> optional

<paraStyle ... /> (any number

<listStyle ... /> ...

<blockTableStyle>...</blockTableStyle> of styles)

</stylesheet>

story

<story>

<para>...</para> (Sequence of

... top level

<illustration>...</illustration> flowables)

</story>

pageInfo

<pageInfo

pageSize="(8.5in,11in)" pair of lengths required

/>

pageDrawing

<pageDrawing>

<drawString ...> ...</drawString> (Sequence of

... graphical

<place ...>...</place> operations)

</pageDrawing>

pageGraphics

<pageGraphics>

<drawString ...> ...</drawString> (Sequence of

... graphical

<place>...</place> operations)

</pageGraphics>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 120

Generic Flowables (Story Elements)

spacer

<spacer

length="1.2in" measurement required

width="5in" measurement

/>

graphicsMode

<graphicsMode

origin="page|local|frame" drawing origin

>

<drawString ...> ...</drawString> (Sequence of

... graphical

<place ...>...</place> operations)

</graphicsMode>

illustration

<illustration

height="1.2in" measurement required

width="5in" measurement required

>

<drawString ...> ...</drawString> (Sequence of

... graphical

<place ...>...</place> operations)

</illustration>

pre

<pre

style="myfavoritestyle" string paragraph style name

>

Preformatted Text also string forms (getname)

</pre>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 121

xpre

<xpre

style="myfavoritestyle" string paragraph style name

>

Paragraph text which may contain intraparagraph markup

</xpre>

plugInFlowable

<plugInFlowable

module="mymodule" string required

function="myfunction" string required

>

string data for plug in unformatted data

</plugInFlowable>

Table Elements

blockTable

<blockTable

style="mytablestyle" string style name

rowHeights="(23, 20, 30, 10)" sequence of measurement

colWidths="50, 90, 35, 11" sequence of measurement

repeatRows="2" repeat two rows when split (or tuple of zero based rows to repeat)

>

<tr>...</tr> (rows of

<tr>...</tr> same length)

</blockTable>

tr

<tr>

</tr>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 122

td

<td

fontName="Helvetica" stringform font name

fontSize="12" stringform font size

fontColor="red" stringform font color

leading="12" stringform line spacing

leftPadding="3" cell left padding

rightPadding="3" cell right padding

topPadding="3" cell top padding

bottomPadding="3" cell bottom padding

background="pink" background color

align="right" cell horizontal alignment

vAlign="bottom" vertical alignment

lineBelowThickness bottom line thickness

lineBelowColor bottom line color

lineBelowCap bottom cap (butt | round | square)

lineBelowCount bottom line count

lineBelowSpace bottom line spacing

lineAboveThickness topline thickness

lineAboveColor top line colour

lineAboveCap top cap (butt | round | square)

lineAboveCount top line count

lineAboveSpace top line spacing

lineLeftThickness left line thickness

lineLeftColor left line color

lineLeftCap left line cap (butt | round | square)

lineLeftCount left line count

lineLeftSpace left line spacing

lineRightThickness right line thickness

lineRightColor right line color

lineRightCap right line cap (butt | round | square)

lineRightCount right line count

lineRightSpace right line spacing

>

</td>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 123

docAssert

<docAssert

cond="i==3" condition string required

format="The value of i is %(__expr__)"format string

/>

docAssign

<docAssign

var="i" string

expr="availableWidth" expression string

/>

docElse

<docElse/>

docIf

<docIf

cond="i==3" condition string

/>

docExec

<docExec

stmt="i-=1" statement string

/>

docPara

<docPara

expr="availableWidth" expression string

format="The value of i is %(__expr__)"format string

style="" string

escape="yes" (yes | no | 0 | 1)

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 124

docWhile

<docWhile

cond="i==3" condition string

/>

drawing

<drawing

baseDir="../" path string

module="python_module" string

function="module_function" string

hAlign="CENTER" center|centre|left|right|CENTER|CENTRE|LEFT|RIGHT

showBoundary="no" (0|1|yes|no)

>

<param name="pname0">value0</param> (sequence of

.... param

<param name="pnamek">valuek</param> tags)

</drawing>

widget

<widget

baseDir="../" path string

module="python_module" string

function="module_function" string

name="somename" string

initargs="someinitargs" string

/>

Paragraph-like Elements

para

<para

style="myfavoritstyle" string paragraph style name

>

</para>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 125

title

<title

style="myfavoritstyle" string paragraph style name

>

</title>

h1

<h1

style="myfavoritstyle" string paragraph style name

>

</h1>

h2

<h2

style="myfavoritstyle" string paragraph style name

>

</h2>

h3

<h3

style="myfavoritstyle" string paragraph style name

>

</h3>

h4

<h4

style="myfavoritstyle" string paragraph style name

>

</h4>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 126

h5

<h5

style="myfavoritstyle" string paragraph style name

>

</h5>

h6

<h6

style="myfavoritstyle" string paragraph style name

>

</h6>

a

<a

color="blue" string color name

fontSize="12" stringform font size

fontName="Helvetica" string font name

name="somename" string

backColor="cyan" string color string

href="someurl" string

>

evalString

<evalString

imports="someimports" string

default="somedefault" string

/>

Intra-Paragraph Markup

RML User Guide Document generated on 2025/07/04 20:17:34

Page 127

i

<i>

</i>

b

font

<font

face="Helvetica" string font name

color="blue" string color name

size="34" fontsize measurement

>

greek

<greek>

</greek>

sub

<sub

rise="5" optional: baseline shifts -rise (or -0.5*font size)

size="6" optional: font size for subscript (font size - 2 or 0.8*font size)

>

</sub>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 128

sup

<sup

rise="5" optional: baseline shifts rise (or 0.5*font size)

size="6" optional: font size for superscript (font size - 2 or 0.8*font size)

>

</sup>

super

<super

rise="5" optional: baseline shifts rise (or 0.5*font size)

size="6" optional: font size for superscript (font size - 2 or 0.8*font size)

>

</super>

strike

<strike/>

sup

<sup/>

seq

<seq

id="SecNum" string

template="%(Ch)s.%(SecNum)s" string

/>

seqDefault

<seqDefault

id="SecNum" string

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 129

seqReset

<seqReset

id="SecNum" string

/>

seqChain

<seqChain

order="id id id id" string

/>

seqFormat

<seqFormat

id="seqId" string

value="format char" (1|i|I|a|A)

/>

onDraw

<onDraw

name="somename" string

label="somelabel" string

/>

br

bullet

<bullet

bulletColor="blue" string color name

bulletFontName="" string

bulletFontSize="1in" measurement

bulletIndent="1in" measurement

bulletOffsetY="1in" measurement

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 130

link

<link

destination="somedestination" string

color="blue" string color name

/>

setLink

<setLink

destination="somedestination" string

color="blue" string color name

/>

unichar

<unichar

name="somename" string

code="somecode" string

/>

Page Level Flowables

nextFrame

<nextFrame

name="frameindex" int or string frame index

/>

setNextFrame

<setNextFrame

name="frameindex" int or string frame index required

/>

nextPage

<nextPage

name="templatename" string template name optional

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 131

setNextTemplate

<setNextTemplate

name="indextemplate" string template name required

/>

condPageBreak

<condPageBreak

height="10cm" measurement required

/>

storyPlace

<storyPlace

x="1in" measurement required

y="7in" measurement required

width="5in" measurement required

height="3in" measurement required

origin="page" "page", "frame", or "local" optional

>

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</storyPlace>

keepInFrame

<keepInFrame

maxWidth="int" maximum width or 0

maxHeight="int" maximum height or 0

frame="frameindex" optional frameindex to start in

mergeSpace="1|0" whether padding space is merged

onOverflow="error|overflow|"

 |shrink|truncate" over flow behaviour

id="name" name for identification purposes

>

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</keepInFrame>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 132

imageAndFlowables

<imageAndFlowables

imageName="path" path to image file or url

imageWidth="float" image width or 0

imageHeight="float" image height or 0

imageMask="color" image transparency color or "auto"

imageLeftPadding="float" space on left of image

imageRightPadding="float" space on right of image

imageTopPadding="float" space on top of image

imageBottomPadding="float" space on bottom of image

imageSide="left" hrizontal image location left|right

>

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</imageAndFlowables>

pto

<pto>

<pto_trailer>...</pto_trailer> optional

<pto_header>...</pto_header> optional

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</pto>

pto_trailer

<pto_trailer>

Only in PTO

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</pto_trailer>

pto_header

<pto_header>

Only in PTO

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</pto_header>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 133

indent

<indent

left="1in" measurement optional

right="1cm" measurement optional

>

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</indent>

frameBackground

<frameBackground

color="pink" color optional

left="1in" measurement optional

right="1cm" measurement optional

start="1" boolean optional

/>

fixedSize

<fixedSize

width="1in" measurement optional

height="1cm" measurement optional

>

<para>...</para> (Sequence of

... top level

<table>...</table> flowables)

</fixedSize>

Graphical Drawing Operations

drawingGraphic

RML User Guide Document generated on 2025/07/04 20:17:34

Page 134

<drawingGraphic

x="1in" measurement required

y="1cm" measurement required

anchor="sw" w|e|sw|s|se|nw|n|ne

baseDir="../" path string

module="python_module" string required

function="module_function" string required

hAlign="CENTER" center|centre|left|right|CENTER|CENTRE|LEFT|RIGHT

showBoundary="no" (0|1|yes|no)

>

<param name="pname0">value0</param> (sequence of

.... param

<param name="pnamek">valuek</param> tags)

</drawingGraphic>

drawString

<drawString

x="1in" measurement required

y="7in" measurement required

>

</drawString>

drawRightString

<drawRightString

x="1in" measurement required

y="7in" measurement required

>

</drawRightString>

drawCentredString

<drawCentredString

x="1in" measurement required

y="7in" measurement required

>

</drawCentredString>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 135

drawCenteredString

<drawCenteredString

x="1in" measurement required

y="7in" measurement required

>

</drawCenteredString>

ellipse

<ellipse

x="1in" measurement required

y="7in" measurement required

width="5cm" measurement required

height="3cm" measurement required

fill="true" truth value

stroke="false" truth value

/>

circle

<circle

x="1in" measurement required

y="7in" measurement required

radius="3cm" measurement required

fill="true" truth value

stroke="false" truth value

/>

rect

<rect

x="1in" measurement required

y="7in" measurement required

width="5cm" measurement required

height="3cm" measurement required

round="1.2cm" measurement

fill="true" truth value

stroke="false" truth value

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 136

grid

<grid

xs="1in 2in 3in" measurements required

ys="7in 7.2in 7.4in" measurements required

/>

lines

<lines>

1in 1in 2in 2in quadruples of

1in 2in 2in 3in measurements

1in 3in 2in 4in representing

... line segments

</lines>

curves

<curves>

1in 1in 2in 2in 2in 3in 1in 3in octtuples of

1in 2in 2in 3in 2in 4in 1in 4in measurements

1in 3in 2in 4in 2in 5in 1in 5in representing

... Bezier curves

</curves>

image

<image

file="cute.jpg" string required

x="1in" measurement required

y="7in" measurement required

width="5cm" measurement

height="3cm" measurement

/>

place

RML User Guide Document generated on 2025/07/04 20:17:34

Page 137

<place

x="1in" measurement required

y="7in" measurement required

width="5in" measurement required

height="3in" measurement required

>

<para>...</para> (Sequence of

... top level

<illustration>...</illustration> flowables)

</place>

doForm

<doForm

name="logo" string required

/>

includePdfPages

<includePdfPages

filename="path" string required: path to included file

pages="1-3,6" string optional: , separated page list

template="name" string optional: pagetemplate name

outlineText="text" string optional: text for outline entry

outlineLevel="1" int optional: outline level default 0

outlineClose="0" int optional: 0 for closed outline entry

leadingFrame="no" bool optional: no if you don't want a page throw use notAtTop for special conditional behaviour.

isdata="yes" bool optional: true if filename is a pageCatcher .data file

orientation="auto" string optional: 0 90 180 270 auto landscape portrait

sx="0.9" float

sy="0.9" float

dx="2in" measurement

dy="2in" measurement

degrees="45" angle in degrees

/>

textField

RML User Guide Document generated on 2025/07/04 20:17:34

Page 138

<textField

id="name" name of field required

value="initial" field initial value optional

x="34" x coord

y="500" y coord

width="72" width

height="12" height

maxlen="1200" maximum #chars

multiline="0/1" 1 for multiline text

>

</textField>

textAnnotation

<textAnnotation>

</textAnnotation>

plugInGraphic

<plugInGraphic

module="mymodule" string required

function="myfunction" string required

>

string data for plug in unformatted data

</plugInGraphic>

path

<path

x="1in" measurement required

y="7in" measurement required

close="true" truth value

fill="true" truth value

stroke="false" truth value

autoclose="none" none|svg|pdf

fillrule="none" none|even-odd|non-zero

>

1in 6in measurement pairs

1in 7in representing points

... or path operations

</path>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 139

barCodeFlowable

<barCodeFlowable

code="Code11" (I2of5 | Code128 | Standard93 | Extended93 | Standard39 | Extended39 | MSI | Codabar | Code11 | FIM | POSTNET | USPS_4State)required

value="somevalue" string required

fontName="Helvetica" string font name

tracking="sometracking" string

routing="somerouting" string

barStrokeColor="blue" string color name

barFillColor="blue" string color name

textColor="blue" string color name

barStrokeWidth="1in" measurement

gap="1in" measurement

ratio="I2of5" string

bearers="" string

barHeight="1in" measurement

barWidth="1in" measurement

fontSize="12" stringform font size

spaceWidth="1in" measurement

spaceHeight="1in" measurement

widthSize="1in" measurement

heightSize="1in" measurement

checksum="-1" (-1 | 0 | 1 | 2)

quiet="yes" (yes | no | 0 | 1)

lquiet="yes" (yes | no | 0 | 1)

rquiet="yes" (yes | no | 0 | 1)

humanReadable="yes" (yes | no | 0 | 1)

stop="yes" (yes | no | 0 | 1)

/>

figure

<figure

showBoundary="no" (0|1|yes|no)

shrinkToFit="no" (0|1|yes|no)

growToFit="no" (0|1|yes|no)

scaleFactor="somescaleFactor" string

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 140

imageFigure

<imageFigure

imageName="someimageName" string

imageWidth="1in" measurement

imageHeight="1in" measurement

imageMask="someimageMask" string

preserveAspectRatio="yes" (yes | no | 0 | 1)

showBoundary="yes" (yes | no | 0 | 1)

pdfBoxType="MediaBox" (MediaBox | CropBox | TrimBox | BleedBox | ArtBox)

pdfPageNumber="4" integer

showBoundary="no" (0|1|yes|no)

shrinkToFit="no" (0|1|yes|no)

growToFit="no" (0|1|yes|no)

caption="somecaption" string

captionFont="12" stringform font name

captionSize="1in" measurement

captionGap="somecaptionGap" string

captionColor="blue" string color name

spaceAfter="4" integer

spaceBefore="4" integer

align="center|centre|left|right|CENTER|CENTRE|LEFT|RIGHT)"(center|centre|left|right|CENTER|CENTRE|LEFT|RIGHT)

/>

img

<img

src="somesrc" string

width="1in" measurement

height="1in" measurement

valign="top" (top|middle|bottom))

/>

Path Operations

moveto

<moveto>

5in 3in measurement pair

</moveto>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 141

curvesto

<curvesto>

1in 1in 1in 4in 4in 4in sextuples of

2in 2in 2in 5in 5in 5in measurements for

... bezier curves

</curvesto>

closePath

<closePath/>

Form Field Elements

barCode

<barCode

x="1in" measurement required

y="1in" measurement required

code="Code 11" "Codabar", "Code11", required

"Code128", "I2of5"

"Standard39", Standard93",

"Extended39", "Extended93"

"MSI", "FIM", "POSTNET"

>

01234545634563 unformatted barcode data

</barCode>

checkBox

RML User Guide Document generated on 2025/07/04 20:17:34

Page 142

<checkBox

style="myboxstyle" string box style name

x="1in" measurement required

y="1in" measurement required

labelFontName="Helvetica" string font name

labelFontSize="12" fontsize measurement

labelTextColor="blue" string color name

boxWidth="1in" measurement

boxHeight="1in" measurement

checkStrokeColor="blue" string color name

boxStrokeColor="blue" string color name

boxFillColor="blue" string color name

lineWidth="1" measurement

line1="label text 1" string

line2="label text 2" string

line3="label text 3" string

checked="false" truth value

bold="false" truth value

graphicOn="cute_on.jpg" string file name

graphicOff="cute_off.jpg" string file name

/>

letterBoxes

RML User Guide Document generated on 2025/07/04 20:17:34

Page 143

<letterBoxes

style="myboxstyle" string box style name

x="1in" measurement required

y="1in" measurement required

count="10" integer required

label="label text" string

labelFontName="Helvetica" string font name

labelFontSize="12" fontsize measurement

labelTextColor="blue" string color name

labelOffsetX="1in" measurement

labelOffsetY="1in" measurement

boxWidth="1in" measurement

boxHeight="1in" measurement

combHeight="0.25" float

boxStrokeColor="blue" string color name

boxFillColor="blue" string color name

textColor="blue" string color name

lineWidth="1in" measurement

fontName="Helvetica" string font name

fontSize="12" fontsize measurement

>

box contents goes here unformatted data

</letterBoxes>

textBox

RML User Guide Document generated on 2025/07/04 20:17:34

Page 144

<textBox

style="myboxstyle" string box style name

x="1in" measurement required

y="1in" measurement required

boxWidth="1in" measurement required

boxHeight="1in" measurement required

labelFontName="Helvetica" string font name

labelFontSize="12" fontsize measurement

labelTextColor="blue" string color name

labelOffsetX="1in" measurement

labelOffsetY="1in" measurement

boxStrokeColor="blue" string color name

boxFillColor="blue" string color name

textColor="blue" string color name

lineWidth="1in" measurement

fontName="Helvetica" string font name

fontSize="12" fontsize measurement

align="left" "left", "right" or "center"

shrinkToFit="false" truth value

label="label text" string

>

box contents goes here unformatted data

</textBox>

Graphical State Change Operations

fill

<fill

color="blue" string name required

/>

stroke

<stroke

color="blue" string name required

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 145

setFont

<setFont

name="Helvetica" string name required

size="1cm" measurement required

/>

form

<form

name="logo" string name required

>

<drawString ...> ...</drawString> (Sequence of

... graphical

<place ...>...</place> operations)

</form>

catchForms

<catchForms

storageFile="storage.data" string name required

/>

scale

<scale

sx="0.8" scale factor required

sy="1.3" scale factor required

/>

translate

<translate

dx="0.8in" measurement required

dy="1.3in" measurement required

/>

rotate

<rotate

degrees="45" angle in degrees required

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 146

skew

<skew

alpha="15" angle in degrees required

beta="5" angle in degrees required

/>

transform

<transform>

1.0 0.3 six number affine

-0.2 1.1 transformation

10.1 15 matrix

</transform>

lineMode

<lineMode

width="0.2cm" measurement

dash=".1cm .2cm" measurements

join="round" "round", "mitered", or "bevelled"

cap="square" "default", "round", or "square"

/>

Style Elements

initialize

<initialize>

<alias.../> sequence of

<name.../> alias, name

<color.../> or color tags

</initialize>

paraStyle

RML User Guide Document generated on 2025/07/04 20:17:34

Page 147

<paraStyle

name="mystyle" string

alias="pretty" string

parent="oldstyle" string

fontname="Courier-Oblique" string

fontsize="13" measurement

leading="20" measurement

leftIndent="1.25in" measurement

rightIndent="2.5in" measurement

firstLineIndent="0.5in" measurement

spaceBefore="0.2in" measurement

spaceAfter="3cm" measurement

alignment="justify" "left", "right", "center" or "justify"

bulletFontName="Courier" string

bulletFontsize="13" measurement

bulletIndent="0.2in" measurement

textColor="red" string

backColor="cyan" string

/>

listStyle

<listStyle

name="myliststyle"" string

alias string

parent name of parent style

start number or bulletvalue or list of same

leftIndent measurement

rightIndent measurement

spaceBefore measurement

spaceAfter measurement

bulletAlign "left", "right" or "center"

bulletType measurement

bulletColor collor specification

bulletFontName='Zapf-Dingbats' string

bulletFontSize measurement

bulletOffsetY measurement

bulletDedent measurement

bulletDir rtl | ltr

bulletFormat string

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 148

ul

<ul

style='mysliststyle' optional list style name

start number or bulletvalue or list of same

leftIndent measurement

rightIndent measurement

spaceBefore measurement

spaceAfter measurement

bulletAlign "left", "right" or "center"

bulletType measurement

bulletColor collor specification

bulletFontName='Zapf-Dingbats' string

bulletFontSize measurement

bulletOffsetY measurement

bulletDedent measurement

bulletDir rtl | ltr

bulletFormat string

>

ol

RML User Guide Document generated on 2025/07/04 20:17:34

Page 149

<ol

style='mysliststyle' optional list style name

start number or bulletvalue or list of same

leftIndent measurement

rightIndent measurement

spaceBefore measurement

spaceAfter measurement

bulletAlign "left", "right" or "center"

bulletType measurement

bulletColor collor specification

bulletFontName='Zapf-Dingbats' string

bulletFontSize measurement

bulletOffsetY measurement

bulletDedent measurement

bulletDir rtl | ltr

bulletFormat string

>

li

<li

style='mysliststyle' optional list style name

value number or bulletvalue to use

leftIndent measurement

rightIndent measurement

spaceBefore measurement

spaceAfter measurement

bulletAlign "left", "right" or "center"

bulletType measurement

bulletColor collor specification

bulletFontName='Zapf-Dingbats' string

bulletFontSize measurement

bulletOffsetY measurement

bulletDedent measurement

bulletDir rtl | ltr

bulletFormat string

>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 150

dl

<dl

ddLeftIndent measurement

ddRghtIndent measurement

>

</dl>

dd|dt

<dd|dt>

</dd|dt>

boxStyle

<boxStyle

name="mystyle" string required

alias="pretty" string

parent="oldstyle" string

fontname="Courier-Oblique" string

fontsize="13" measurement

alignment="left" "left", "right" or "center"

textColor="blue" string color name

labelFontName="Courier" string

labelFontSize="13" measurement

labelAlignment="left" "left", "right" or "center"

labelTextColor="blue" string color name

boxFillColor="blue" string color name

boxStrokeColor="blue" string color name

cellWidth="1in" measurement

cellHeight="1in" measurement

/>

blockTableStyle

RML User Guide Document generated on 2025/07/04 20:17:34

Page 151

<blockTableStyle

id="mytablestyle" string

>

<blockFont.../> table style

<blockLeading.../> block descriptors

</blockTableStyle>

Table Style Block Descriptors

blockFont

<blockFont

name="TimesRoman" string required

size="8" measurement

leading="10" measurement

start="4" integer

stop="11" integer

/>

blockLeading

<blockLeading

length="10" measurement required

start="4" integer

stop="11" integer

/>

blockTextColor

<blockTextColor

colorName="pink" string required

start="4" integer

stop="11" integer

/>

blockAlignment

<blockAlignment

value="left" "left", "right", or "center"

start="4" integer

stop="11" integer

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 152

blockLeftPadding

<blockLeftPadding

length="0.2in" measurement required

start="4" integer

stop="11" integer

/>

blockRightPadding

<blockRightPadding

length="0.2in" measurement required

start="4" integer

stop="11" integer

/>

blockBottomPadding

<blockBottomPadding

length="0.2in" measurement required

start="4" integer

stop="11" integer

/>

blockTopPadding

<blockTopPadding

length="0.2in" measurement required

start="4" integer

stop="11" integer

/>

blockBackground

<blockBackground

colorName="indigo" string required

start="4" integer

stop="11" integer

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 153

blockValign

<blockValign

value="left" "top", "middle", or "bottom"

start="4" integer

stop="11" integer

/>

blockSpan

<blockSpan

start="4" integer

stop="4" integer

/>

lineStyle

<lineStyle

kind="BOX" line command required

thickness="4" measurement required

colorName="magenta" string required

start="4" integer

stop="11" integer

count="2" integer

space="2" integer

dash="2,2" integer,integer

/>

The line command names are: GRID, BOX, OUTLINE, INNERGRID, LINEBELOW, LINEABOVE, LINE-
BEFORE and LINEAFTER. BOX and OUTLINE are equivalent, and GRID is the equivalent of applying both
BOX and INNERGRID.

roundedCorners

<roundedCorners

radii="5,5,0,0" none or comma separated numbersoptional

/>

0 radius means square; only borders though the exact corners will get an octant curve at each end.

RML User Guide Document generated on 2025/07/04 20:17:34

Page 154

bulkData

<bulkData

stripBlock="yes" (yes | no)

stripLines="yes" (yes | no)

stripFields="yes" (yes | no)

fieldDelim="," string

recordDelim="," string

/>

excelData

<excelData

fileName="somefileName" string

sheetName="somesheetName" string

range="A1:B7" string

rangeName="somerangeName" string

/>

Page Layout Tags

pageTemplate

<pageTemplate

id="frontpage" string required

pageSize="(8.5in, 11in)" override template page size

rotation="270" override template page angular orientation

>

<pageGraphics>...</pageGraphics>... optional 1 or 2

<frame.../> one or more

</pageTemplate>

frame

<frame

id="left" string required

x1="1in" measurement required

y1="1in" measurement required

width="50cm" measurement required

height="90cm" measurement required

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 155

pageGraphics

<pageGraphics/>

Special Tags

name

<name

id="chapterName" string required

value="Introduction" string required

/>

alias

<alias

id="footerString" string required

value="chapterName" string required

/>

getName

<getName

id="<name>" string required

default="value" string optional used if <name> is not defined

indexName="<namex>" string optional value of <namex> defines index of <name> to be used

/>

color

<color

id="footerString" string required

RGB="77aa00" hexidecimal red/green/blue values

/>

pageNumber

<pageNumber

countingFrom="2" integer

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 156

outlineAdd

<outlineAdd

level="1" integer

closed="true" truth value

>

Chapter 1, section 2 outline entry text

</outlineAdd>

cropMarks

<cropMarks

borderWidth="36" integer

markWidth="0.5" float

markColor="green" color

markLength="18" integer

/>

startIndex

<startIndex

name="somename" string

offset="0" integer

format="ABC" 123|I|i|ABC|abc

/>

index

<index

name="somename" string

offset="0" integer

format="ABC" 123|I|i|ABC|abc

/>

showIndex

<showIndex

name="somename" string

dot="-" string

style="somestyle" string

tableStyle="sometablestyle" string

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 157

bookmark

<bookmark

name="somename" string

x="1in" measurement

y="1in" measurement

/>

bookmarkPage

<bookmarkPage

name="somename" string

fit="XYZ|Fit|FitH|FitV|FitR)" (XYZ|Fit|FitH|FitV|FitR)

top="1in" measurement

bottom="1in" measurement

left="1in" measurement

right="1in" measurement

zoom="somezoom" string

/>

join

<join

type="sometype" string

/>

length

<length

id="someid" string

value="4" integer

/>

namedString

<namedString

id="<name>" string

default="somedefault" string

indexName="<name1>" string value of <name1> deines index of <name> to use to store value

new="<bool>" string if true value will be used only if not already defined

discard="<bool>" string if true assign immediately (don't wait for render) and discard render

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 158

param

<param

name="somename" string

/>

registerCidFont

<registerCidFont

faceName="VeraBold" font name string

encName="WinAnsiEncoding" string

/>

registerFont

<registerFont

name="somename" string

faceName="VeraBold" font name string

encName="WinAnsiEncoding" string

/>

registerFontFamily

<registerFontFamily

normal="VeraBold" font name string

bold="VeraBold" font name string

italic="VeraBold" font name string

boldItalic="VeraBold" font name string

/>

registerTTFont

<registerTTFont

faceName="VeraBold" font name string

fileName="somefileName" string

/>

registerType1Face

<registerType1Face

afmFile="DarkGardenMK.afm" string

pfbFile="DarkGardenMK.pfb" string

/>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 159

restoreState

<restoreState/>

saveState

<saveState/>

setFont

<setFont

name="somename" font name string

size="1in" measurement

leading="4" integer

/>

setFontSize

<setFontSize

size="1in" measurement

leading="4" integer

/>

Log tags

log

<log

log="evel" (DEBUG | INFO | WARNING | ERROR | CRITICAL)

>

</log>

debug

<debug>

</debug>

RML User Guide Document generated on 2025/07/04 20:17:34

Page 160

info

<info>

</info>

warning

<warning>

</warning>

error

<error>

</error>

critical

<critical>

</critical>

logConfig

<logConfig

level="DEBUG" (DEBUG | INFO | WARNING | ERROR | CRITICAL)

format="The value of i is %(__expr__)"format string

filename="somefilename" string

filemode="WRITE" (WRITE | APPEND)

datefmt="somedatefmt" string

/>

	Table of Contents
	Preliminaries
	Introduction
	ReportLab PLUS
	Installation and Use
	What is RML?
	What is this document?
	Who is this document aimed at?
	Conventions used in this document

	Part I - The Basics
	Pages and page structures
	XML syntax and RML
	The prolog
	Document forms: stylesheet/pageDrawing vs template/stylesheet/story

	Basic Text Operations
	Coordinates and measurements
	Using Colors
	Using fonts
	Basic text operations - setFont and drawString

	Basic figures - lines and shapes
	Rect, circle and ellipse
	Fill and stroke
	Lines and lineMode

	Graphics vs Flowables
	More about pages and page structures
	More about template and pageTemplate
	Frame and nextFrame
	condPageBreak: conditional page breaks
	storyPlace: out of band flowables
	pto: Please Turn Over Control
	keepInFrame fixed space control
	imageAndFlowables tag
	More about stylesheets

	Advanced text
	Title
	Headings -- h1, h2, h3
	Paragraphs and paragraph styles
	The font tag
	Superscripts and subscripts
	Lists
	Using multiple frames
	Preformated text -- pre and xpre
	Greek letters
	Asian Fonts
	Paragraph Hyphenation

	Part II - Advanced Features
	Miscellaneous useful features
	pageNumber
	name, namedString and getName
	Seq, seqReset, seqChain and SeqFormat
	Entities
	Aliases
	CDATA -- unparsed character data
	Plug-ins: plugInGraphic and plugInFlowable
	Integrating with PageCatcher: catchForms, doForm and includePdfPages
	Outlines
	Form field tags
	Interactive Form Field tags
	Colorspace Checking
	Balanced Column

	About Cross References and Page Numbers
	the namedString tag and forward references
	Multiple pass pdf formatting
	Calculated Page Numbers: evalString
	Generated RML

	More graphics
	curves
	paths
	grids
	Translations
	scaling
	rotations
	Skew
	Generic affine transforms
	About scale, rotate, and skew
	Bitmapped images
	Text Fields
	place, illustration & graphicsMode
	spacer
	Form and doForm
	Why use forms?

	Conditional Formatting
	Introduction
	Tags
	Operators
	Examples
	Reference

	Printing
	Crop Marks
	Bleed
	CMYK Colours
	Images in CMYK documents
	Overprint and knockout control
	Colour separations
	Pagination
	More information

	Part III - Tables
	Using tables
	Block tables
	Block table attributes
	Block table styles
	More about block tables
	Using block table styles

	Appendix A - Colors recognized by RML
	Appendix B - Glossary of terms and abbreviations
	Appendix C - Letters used by the Greek tag
	Appendix D - Command reference

