Installing Diagra Graphics Library on Mac OS 9

Andy Robinson, 17 March 2003 – draft 2

Changes since last version:

· addition of standard chart sample modules

· extended the core Drawing class so that generating EPS is a one-liner, leading to much simpler chart construction

This covers installation of our first version of the embedded Diagra graphics engine for Mac. The document itself was written on a Mac by a complete Mac novice and some screen shots have gone strange while being converted to PC – sorry about this but I hope it works!

We have provided a directory of files on the internet and it contains:

· 00readme.doc / pdf – this document

· Python for the Macintosh

· ReportLabPythonLibraries.sit

· Chartapp.sit – the library which exposes our chart engine to calling C programs, and some tests

1 Install MacPython

Download and run the installer MacPython222full.bin. This will install Python 2.2.2 in your Application folder. If you have a dual boot machine we recommend the folder “Applications (Mac OS 9)” as there are several different OS X distributions.

After installation you should see a screen like this (sorry, we don’t know what happened to the bitmap):

Double-click “ConfigurePythonClassic” which will flip this into a Classic configuration. (It contains classic and carbon versions but you have to choose which to use at one time; the default is usually Carbon).

[image: image1.wmf]
After running this, double click the “PythonInterpreter” icon. You should see an interactive prompt like this:

Python 2.2.2 (#138, Oct 25 2002, 22:58:55) [CW PPC GUSI2 THREADS GC] on mac

Type "copyright", "credits" or "license" for more information.

>>>

If you type an expression, e.g. “2+2” and press Enter, it should evaluate it.

That’s fine, Python in installed, quit it now.

2 Install reportlab libraries

We will now install ReportLab’s standard library files for making PDF, EPS etc. This is not a mac-specific install program – I just made a stuffit file with the parts you need this morning.

Download the file “ReportLabPythonLibraries.sit” and open it up. The contents should ALL be placed in the lib:site-packages folder under your Python installation. On my machine that is:

Macintosh HD:Applications (Mac OS 9):Python 2.2.2:Lib:site-packages

Put the CONTENTS in here (the SLB files and reportlab and rlextra folders); do not create a folder “ReportLabPythonLibraries” in here.

After doing this you can restart you PythonInterpreter, or just go back to it if it is still on screen (no restart needed). We will then try several import statements in sequence, to verify that the right components are installed. Please repeat these. The code should execuite with no errors; if you have a typo you will see some lines saying ‘ImportError’

Python 2.2.2 (#138, Oct 25 2002, 22:58:55) [CW PPC GUSI2 THREADS GC] on mac

Type "copyright", "credits" or "license" for more information.

>>> import reportlab

>>> import rlextra

>>> import reportlab.graphics.shapes

>>> import rlextra.graphics.renderPS_SEP

>>> import pyRXP

>>> import _rl_accel

>>> import _renderPM

>>> import reportlab.graphics.renderPM

>>>

If you get genuine errors which are not typos, contact me!

3 Step 3 – testing chart generation

You can now download and try out the chart generation API. Get the file “chartapp.sit”.

This folder contains the following:

rl_embed_std.slb - the compiled “entry point” for our library which links to all the stuff in steps 1 and 2

Two compiled calling programs (trl_embed (DBG)) and geneps (DBG)
A sample ‘chart format string’ in sample_eps.py. This is not actually a chart, it’s a flag.
[image: image2.wmf]
The quickest test is to run geneps
[image: image3.wmf]
Enter “sample_eps.py myfile.eps”: as we have done, and click ‘OK’. After a couple of seconds you will see a new file in the folder, “myfile.eps”. The application does not currently set the file type to allow a double click.

Explanation: ‘sample_eps.py’ is the ‘format string’ sent to the shared library, ‘myfile.eps’ is the file we want the output saved in.

There is a second test which may be more useful to a C/C++ programmer: ‘trl_embed.c’ and ‘trl_embed (DBG)’ (which standas for test rl_embed) just show the output from the Shared Library on a command line.

[image: image4.wmf]
You can see the standard output of the test program. It tells us it has received about 10k of data, then prints the data - which, as you can see, is an EPS file – then prints a line at the end.

[image: image5.wmf]
4 Chart creation API

We will document this at greater length, but it is exactly what we sent for Windows in December.

4.1 Chart Format String

A short string needs to be created in your own application. This is covered in greater detail below, but here’s an example which will work if you have the ‘clustered_bar.py’ module present.

import clustered_bar

drawing = clustered_bar.ClusteredBar()

drawing.chart.data = [[20,25,30],[22,27,32]]

import __main__

__main__._rl_embed_result = drawing.asString('eps')

4.2 C API

This was explained in December but here’s a quick recap. The full source of the test program is shown below.

You call one of two functions in the Shared Library: rl_run_file or rl_run_string. You either pass a chart format string like the one above to rl_run_string, or you pass a filename containing such text (as we did in our examples) to rl_run_file. You get back a struct with an error-or-success flag, the length of the result, and a pointer to the location of the result. The result object can be ANYTHING but in the case of the above program (and most of ours) it is an EPS file.
#include <stdio.h>

#include <io.h>

#include <stdlib.h>

#define WIN32_LEAN_AND_MEAN

#include <windows.h>

typedef struct {

char*
errorString;

int

resultStringLength;

char*
resultString;

} rl_embed_rt;

__declspec(dllimport) rl_embed_rt rl_run_file(char*);

__declspec(dllimport) rl_embed_rt rl_run_string(char*);

void main(int argc, char** argv)

{

rl_embed_rt r;

if(argc<2){

fprintf(stderr,"Use %s script script.....\n", argv[0]);

exit(1);

}

else{

int

i;

for(i=1;i<argc;i++){

printf("=============================\nStart rl_run_file(%s)\n", argv[i]);

r = rl_run_file(argv[i]);

printf(" finish r.errorString = %s\n", r.errorString==NULL ? "(NULL)" : r.errorString);

printf(" r.resultString %d bytes = %s\n", r.resultStringLength, r.resultString==NULL ? "(NULL)" : r.resultString);

}

}

printf("=============================\n");

printf("Doing string run Hello World\n");

r = rl_run_string("print 'Hello World from trl_embed.c'\n");

printf(" finish r.errorString = %s\n", r.errorString==NULL ? "(NULL)" : r.errorString);

printf(" r.resultString = %s\n", r.resultString==NULL ? "(NULL)" : r.resultString);

Tutorial: how to customize charts

It is possible to directly create charts and data graphics by passing through all kinds of code. However, to make life easy we have provided some “sample drawings” similar to those in Excel. In the “2d charts” phase we expect to make a large number of these, with documentation. For now we attach 8 charts (line charts will follow in a day or two). Each of these is a Python module, which can either be delivered separately or compiled into the application.

	Module: clustered_bar.py

Drawing Class: ClusteredBar

[image: image6.png]

	Module: clustered_column

Class: ClusteredColumn

[image: image7.png]

	Module: simple_pie.py

Class: SimplePie

[image: image8.png]

	Module: exploded_pie.py

Class: ExplodedPie

[image: image9.png]

	Module: stacked_bar.py

Class: StackedBar

[image: image10.png]

	Module: stacked_column.py

Class: StackedColumn

[image: image11.png]

	Module: radar_chart.py

Class: RadarChart

[image: image12.png]

	Module: filled_radar_chart.py

Class: FilledRadarChart

[image: image13.png]

To generate a chart of one of these types, you send through a ‘format string’. This string is actually executable Python code and will consist of multiple lines. It finishes by assigning a value to a special variable which can be retrieved by the C API. Here’s a very simple example just 5 lines long. All it does is set the numeric data of a chart (keeping all other defaults) and retrieve it in EPS format:

import clustered_bar

drawing = clustered_bar.ClusteredBar()

drawing.chart.data = [[20,25,30],[22,27,32]]

import __main__

__main__._rl_embed_result = drawing.asString('eps')

We will step through the various parts of this and explain their meaning.

4.3 Importing a base class

The first stage is to construct a Drawing object. Drawings are not necessarily charts. A single Drawing is a rectangle which can contain multiple charts, legends and anything else. It is possible to make a naked, blank drawing and explicitly add things to it. However, we will start the easy way by taking a “ready made” one from our 8 samples, which has a legend, a title and a bar chart.

import clustered_bar

drawing = clustered_bar.ClusteredBar()

The first two lines import the relevant code module defining the “Base Class” we are going to use. The “import” statement can find code modules anywhere on the python path, which is a lot like a Java classpath. This includes the current directory; various places under the Python distribution; and user-defined directories or ones which can be specified by the app. The second line just creates a drawing object. The variable name ‘drawing’ is arbitrary, but we recommend using it throughout.

Before release, we expect to place numerous sample charts within the reportlab package hierarchy and “compile them in” to the app. So, this one might be available as “reportlab.graphics.samples.clustered_bar”. However keeping them separate and in the current directory gives maximum flexibility at the moment. We recommend to just place the sample charts in the working directory for the next week or so.

4.4 Setting drawing attributes

The next stage will be to set attributes of the drawing. Each drawing has many attributes, which are covered in our comuter generated “graphics reference”. However the best place to get a QUICK idea of the important ones is to look at the source code of the Python modules listed above; apart from a bit at the beginning and the end, they are basically long lists of property assignments.

Even if you like the size and style of the sample drawing, you will almost certainly want to set its numeric data. For a bar chart this is a two-dimensional array formatted as follows.

drawing.chart.data = [[20,25,30],[22,27,32]]

If you use a line like this, it will override the “canned data” present in the sample drawing. You will probably also want to set up the ‘categories’. Specifically, the chart’s category axis has a list of categoryNames you can set:

drawing.chart.categoryAxis.categoryNames = ['North', 'South', 'Central']

There is nothing special about the data and categories. There are hundreds of properties. The best way to get a quick feel is to look in the source of the module clustered_bar.py. It was actually created with our “Drawing Editor”, and shows the properties that were set visually.

We will run through some of the more common things which need setting. The first one is likely to be the size.

Warning: at the moment, there is no ‘auto sizing’. If you asked for a big drawing e.g. 400x300 instead of 200x150, the chart within it would be sitting lost in the bottom left corner. We expect to fix this in our ‘2d charts’ phase. The idea is that when you set the overall drawing size, the contents will be scaled. This is not done yet (on 17th March 2003)

You can set the size of the overall drawing. This is in points for vector formats (EPS, PDF) or pixels for bitmaps (PNG, GIF, JPG). You can also

drawing.width = 400

drawing.height = 300

You can also set the position of any object within it, such as the chart itself. Charts have x,y,width and height, which defines the inner ‘plot area’; it is your responsibility to allow enough space for the axis labels.

drawing.chart.x = 50

drawing.chart.y = 50

drawing.chart.width = 200

drawing.chart.height = 140

For most charts there is a title, a chart and a legend, and you can set the positions of each. There is no automatic layout logic to size them. For a demo today, the quickest way to hide the legend is to move it off the page with a large negative x or y coordinate! We will make sure that there is some automatic logic to hide or remove legends shortly.

Each chart has a title label. This one is called, not surprisingly, ‘Title’. To change its text, position and font you might do this:

drawing.Title.fontName = 'Times-Roman'

drawing.Title.fontSize = 6

drawing.Title.x = 100

drawing.Title.y = 135

drawing.Title._text = 'Chart Title'

drawing.Title.maxWidth = 180

drawing.Title.height = 20

drawing.Title.textAnchor ='middle'

The Title is an instance of a Label object, which can be found in the graphics reference. Labels are quite smart; you can define if they are anchored by their start, middle or end, a bounding box to enclose them and force wrapping onto multiple lines, as well as font name and size.

Charts are object-oriented and most properties are found in sub-objects. For example you can set all the properties of the axis label text . All the available properties can be found by looking in the”graphics reference”

drawing.chart.valueAxis.labels.fontSize = 6

4.5 Finishing off

The final thing your script must do is to return something to the calling C program. Two things are going on here.

First of all, each drawing object knows how to convert itself into an array of bytes in several formats. The line drawing.asString(‘eps’) returns an EPS file in memory. Similarly, drawing.asString(‘gif’) would return a GIF.

Secondly, we needed a way for a calling C program to retrieve an arbitrary binary object. The convention is that a variable _rl_embed_result , in a special global namespace, holds the generated object.

import __main__

__main__._rl_embed_result = drawing.asString('eps')

If possible we will add support for PICT files in this manner, so you can ask for ‘pict’ as a file format. If this is troublesome we might provide some QuickDraw hooks and a different manner to get back a PICT file.

PAGE
9

_1109450425.bin

_1109450484.bin

_1109450497.bin

_1109450536.bin

_1109450476.bin

_1109450362.bin

_1109450408.bin

_1109447771.bin

