

Generated by: Reportlab Europe Ltd

Welcome Letter

Dear ACCU Attendee,

We are delighted that you have joined us at The ACCU Spring Conference 2003 incorporating the Python UK Conference,
April 2 – 5, 2003, at Holiday Inn, Oxford, Peartree Roundabout.

The ACCU Spring Conference consists of 57 hard-core sessions spread over FOUR full days. Topics ranging from "C++
Threading" to "Advanced Template Techniques" to "Concurrent Programming in Java". All the sessions will be presented by top
experts in their field of specialisation. The Conference will offer you a unique opportunity to master all the latest tips and
techniques to help you programme faster and more efficiently, as well as providing you with in-depth information on technical
issues and future directions.

There will also be 4 spectacular keynote sessions, one each day from 09.00 – 10.00. These are:

● "Why design another programming language" by Guido van Rossum

● "In the Spirit of C" by Greg Colvin

● "The Cost of C & C++ Compatibility" by Andrew Koenig

● "The Internet, Software and Computers – A Report Card" by Alan Lenton

We are very lucky to have such eminent speakers and these sessions are not to be missed.

There will also be lunchtime presentations from our Exhibitors. We have a tentative timetable set but please ask at the
Registration Desk for confirmed times each day.

This year there will be plenty of opportunity to get together after-hours with Birds-of-a Feather sessions, as well as the
regular Blackwell’s reception on Thursday evening and Speaker Dinner on Friday evening.

As an attendee of the ACCU Spring Conference, you’ll get source code, objects, and sample applications on the conference
CD-ROM which you will find in your delegate bag.

Have a wonderful conference.

There’s no better way to learn C and C + + than from the source. We look forward to seeing you there.

Sincerely,

Talks and Speakers Details

Keynote

In the Spirit of C [Keynote], Greg Colvin
day: 0, time: 9:00

C++ and Java owe much to their C heritage, and the
usefulness of C has only been increased by the success of its
descendants. These languages serve a community of related
interests, and in my opinion need both constraints on
compatibility and room to grow in order to continue to be of
service. The most important maxim of the Spirit of C is "Trust
the Programmer." That maxim imposes a corollary obligation
on us as designers and standardizers to provide the
programmer with trustworthy and effective tools for the job at
hand. We will explore where and how these languages are
effective today, and what we need to do to maintain that
effectiveness into the future.

I Dr. Colvin learned to program in 1972, on a PDP-8. He has
been coding C and doing object oriented design since 1984,
C++ and generic design since 1988, has served on WG21
since 1990, is a founding Boost member, and has recently
joined WG 14. He has worked in the Oracle JVM group since
2000, and is Oracle's C/C++ liaison for ISO. He is also a
dedicated blues musician, recording engineer, Tennessee
Walking Horse breeder, and antiwar activist in what little spare
time remains.

Why design another programming language? [Keynote],
Guido van Rossum
day: 1, time: 9:00

The creator of Python muses on the forces that influenced
Python's design, and what lies ahead.

Guido van Rossum created Python, a major open source
programming language, in the early 1990s at CWI in
Amsterdam. He is still actively involved in Python's
development. In 1995 he moved to the United States, where
he now lives and works in Reston, Virginia for Zope
Corporation -- developers of Zope, the leading open source
content management system (written in Python, of course).

The Cost of C & C++ Compatibility [Keynote], Andy Koenig
day: 2, time: 9:00

This was first presented as a technical session at the Autumn
meeting of WG21 and J16 (C++ Standards Committees).
During the talk I will consider various aspects of maintaining
backward compatibility within languages whose history
extends back almost 30 years. I will be examining the way in
which hardware development questions many of the
assumptions that are made in language design and use. The
main purpose of this keynote is to challenge your view of the
C family of languages and ask you to consider how we should
move forward.

Andrew Koenig is a member of the Communication Software
Research Department at AT&T Shannon Laboratory, which
was once part of Bell Laboratories. He has been working
mostly on C++ since 1986, and is the C++ standards
committee's project editor. He joined Bell Labs in 1977 from
Columbia University. Aside from C++, his work has included

programming language design and implementation, security,
automatic software distribution, online transaction processing,
and computer chess. He is the author or coauthor of more
than 150 articles and the book `C Traps and Pitfalls,' and
coauthor of the books `Ruminations on C++' and `Accelerated
C++.' He has taught courses at Columbia and Princeton
Universities and Stevens Institute of Technology, given
tutorials for Usenix Association, Stanford University, Boston
University, Lund Institute of Technology, ACCU, SIGS
Conferences, the Federal Open Systems Conference Board,
and the Federal Reserve Bank, and given invited talks for
IBM, Syracuse University, ACM, IEEE, Miller-Freeman, and
AT&T in Tokyo, and a keynote talk for the 10th International
Python conference.

The Internet, Software and Computers – A Report Card
[Keynote], Alan Lenton
day: 4, time: 9:00

The demise of the 'dot com' companies, the 'war' on terror, the
assault on peer-to-peer technologies, Microsoft's Paladium
initiative, the operation of the patent laws and changes to
copyright laws have a great deal of potential to change the
face of computing as we know it. Desk top computers are a
relatively recent innovation, and they are viewed by many
powerful grouping in society as a threat to their interests. This
talk looks at what is happening as they try to defend their
interests and how it will impact those who work with
computers.

Alan Lenton is in charge of the design, development and
programming of multi-player games for Interactive
Broadcasting Ltd. He also handles technical matters relating
to the delivery of the games over the Internet.

Multi-player games designed include Federation, an
adventure/economic simulation set in a future universe; Iron
Wolves, a submarine simulation; Age of Adventure, a
role-playing game based in Victorian times, now in beta-test;
and Barbarossa, a strategy wargame based on the German
invasion of Russia in 1941, now in alpha-test.

He lives in London, and as well as his work for Interactive
Broadcasting, he is a member of the BSI's C++ panel and a
long standing member of ACCU.

Alan produces a weekly newsletter covering issues affecting
the Internet and computing generally. Web site:
http://www.ibgames.net/alan

Python UK Conference

Extreme Programming in Python, Chris Withers
day: 1, time: 10:30

This talk will introduce the basic principles of Extreme
Programming, and explain Python's support for unit testing,
including "unittest" and associated tools. It will draw on NIP's
real world experiences of using this methodology in
production.

In addition time will be provided for anyone else working with
XP to recount and discuss their experiences and demonstrate
associated testing tools.

Chris Withers has been developing Python and Zope
applications for New Information Paradigms
(http://www.nipltd.com) for the last three years. He is the
maintainer of the Squishdot project as well as doing core
development work on both Zope and its Content Management
Framework. His areas of special interest include unit testing
and content management systems.

Siena Web Service Architecture, Marc-André Lemburg
day: 1, time: 10:30

In today's business world, Web Services authoring has
become a synonym for having to write JavaBeans-based Java
code for deployment on J2EE compatible application servers.
This talk will demonstrate an alternative solution which is built
around Python with the aim of making service writing easy,
flexible and productive.

CORBA? Isn't that obsolete?, Duncan Grisby
day: 1, time: 2:00

If you keep up to date with the mainstream IT media, you
could be forgiven for thinking that CORBA was obsolete, and
thoroughly dead. In fact, it is alive and well, and is the best
solution to a wide range of distributed application problems.
This talk introduces the features of the CORBA object model
and services, and discusses when it is most sensible to use
CORBA, in comparison to other technologies. The talk is
based around using CORBA from Python, but it also shows
how it can be used to build robust distributed systems with a
mix of programming languages, including Python, C++ and
Java.

Duncan is an experienced software architect and developer
specialising in distributed and concurrent systems. He is the
lead developer of omniORB, a high performance open source
CORBA implementation. From 1999 until its closure in April
2002, Duncan was a researcher at AT&T Laboratories
Cambridge, Europe's leading computing and communications
research laboratory. Since leaving AT&T he has been working
as an independent contractor on a number of large-scale
distributed systems integration projects. Duncan holds MA
and PhD degrees from Cambridge University, England.

Python Design Patterns, Duncan Booth
day: 1, time: 2:00

What design patterns are applicable to Python? Some
patterns are an intrinsic part of Python, other patterns require
some careful coding to get the best from them. What new
patterns appear in Python?

This slot will also include time for anyone wishing to discuss,
explain or demonstrate their own patterns.

Duncan graduated as a Computer Scientist from Cambridge
University and initially worked for Torch Computers using
BCPL, C and Assembler before joining the fledging RCP as
the third employee in 1984. Duncan has worked on many
projects in RCP, including foreign exchange dealing, real-time
financial data, banking back office systems, and healthcare
systems. His interest in Python was first sparked at a science
fiction convention, since when it has become a major player in
his choice of languages. As well as writing in Python he also
ported it to the Psion 5 handheld. He is currently working with

a variety of internet based systems including Python and
Zope.

Parsing made easier - a radical old idea, Andy Koenig
day: 1, time: 4:00

As powerful as Python regular expressions may be, there are
some things they just can't handle, such as nested data
structures or sequences of symbols that aren't characters.
Snobol4 solved some of these problems 35 years ago, but the
language never caught on. In the Python world, the SnoPy
project offers a gateway to a Snobol-style pattern matcher that
is part of GNAT, the Gnu Ada Translator, but not every
platform has GNAT available.

This talk describes a pure Python library that captures most of
Snobol's pattern-matching capabilities. Moreover, it lets you
do some interesting things that Snobol can't do, such as

● using regular expressions as pattern elements,

● making it unnecessary to imitate them;

● specifying how to put strings back together after the
patterns have taken them apart; and

● storing intermediate data in safer places than global
variables.

This library is a work in progress, so the exact contents of the
talk will depend on how much progress I've made by then.
However, I hope to be able to show some examples that are
entertaining, and perhaps even useful.

RESTful Python, Hamish Lawson
day: 1, time: 4:00

Web Services are all the buzz just now - and for many people,
Web Services means SOAP and other new protocols. But a
number of notables from the Web and XML worlds are
concerned that, in adopting an essentially RPC model rather
than a resource-based one, SOAP discounts the architectural
lessons that have been learned about what made the Web
successful - so making it harder for SOAP-based Web
Services to achieve the ubiquity enjoyed by the Web itself.
Instead it is possible to deploy Web Services that do follow
the Web's architectural principles and that use the established
Web protocols we already know. These architectural
principles have been captured under the name
Representational State Transfer, or REST. In the first half of
my talk I will discuss what these REST principles are and how
they help in creating maintainable and interoperable web
spaces. In the second half I will survey the support for REST
provided by various Python web application frameworks, in
particular Quixote.

Hamish Lawson is a software developer in the IT Services
department at the University of St Andrews, Scotland. He
specializes in web-based enterprise information systems.

Introduction to Python and Jython for C++ and Java
Programmers, Alex Martelli
day: 2, time: 10:30

A general 90-minutes tutorial about Python and Jython for
experienced C++ and Java programmers attending the rest of
the ACCU conference

Alex Martelli lives in Italy and is a Senior System Developer
with AB Strakt in Sweden, mostly writing Business Logic

infrastructure and modules for Strakt's CAPS Real-Time
Enterprise Computing platform. Alex co-edited the "Python
Cookbook", and wrote "Python in a Nutshell", both for
O'Reilly. Alex is a popular poster to comp.lang.python, the
winner of the "Python Activators' Choice 2002" award, a
member of the Python Software Foundation, and a board
member of the Python Business Forum.

The Infinite Filing Cabinet - object storage in Python,
Jacob Hallé
day: 2, time: 10:30

Editor's note - within a 90 minute slot we intend to provide a
general survey of Object Storage techniques in Python. This
will hopefully include a full talk on ZODB (speaker volunteers
welcome) for use outside of Zope, as well as the following talk
which will last 30-45 minutes:

The workhorse of the CAPS system is a database and
supporting software which is called the Infinite Filing Cabinet,
the IFC. Information is organised as objects and the IFC,
written in Python, is the persistent storage of these
objects.Objects can be searched for, retrieved and dynamic
notification of object creation or modification can be
requested. More complex actions can also be performed
when objects transit specified states at optionally specified
times. The IFC does not support the deletion of data; this is
performed by deprecation. It is therefore possible to access
any object in any of its prior forms.

Building GUI Applications with PythonCard and PyCrust,
Andy Todd
day: 2, time: 2:00

In this session, we will demonstrate the process of building
full-blown Python applications with world-class graphical user
interfaces. By giving you access to the full power of Python
without requiring you to master complex GUI libraries,
PythonCard becomes a power tool for scripting users and
professional programmers alike.

Creating graphical desktop applications that run across
platforms and take advantage of Python's simple elegance is
easier than you think. In addition PyCrust, the embeddable
Python shell, puts the power of the Python interpreter at your
fingertips. That means every GUI widget in your application
can be inspected and manipulated from the PyCrust shell
while your application is running. The combination of PyCrust
and PythonCard brings the power and flexibility of Python to
the realm of cross-platform GUI applications.

Andy has been involved in the PythonCard project since its
inception in 2001. As one of the developers on the project he
has contributed code, samples and documentation. His areas
of special interest include storage, in particular relational
databases, and object-relational mapping as well as agile
methodologies.

Integrating Python, C and C++, Duncan Booth
day: 2, time: 2:00

Sometimes Python on its own isn't quite enough. Maybe you
want to access a library available only in C or C++, maybe
you want to script an existing C/C++ application, or maybe
you just want an easier way to test your C/C++ code.

This talk introduces the Python C API, and also looks at more
sophisticated interfaces such as SWIG, SIP and Boost.

Lightning Talks, Paul Brian
day: 2, time: 4:00

This session will consist of a number of 5 or 10 minute talks,
as held to wide acclaim at recent Python events.

Paul will accept entries during the conference. And since
many other topics are too short for a 90 minute talk, we may
well fit more lightning talks into other slots too!

Scripting Java Applications with Jython, Anthony Eden
day: 2, time: 4:00

Java is currently one of the most powerful server-side
languages available. Thanks to the fact that it is
cross-platform, dynamically linked and has a very
comprehensive set of standard and open source libraries,
Java is a very good solution for server-side development. The
main problem with developing server-side Java applications is
the edit/compile/deploy portion of the development cycle
which increases development time. Enter Jython. Since it is
written in Java, Jython acquires all of the benefits of the Java
platform without the need for a compile cycle. In this
presentation I will explain how the JPublish web framework
(http://www.jpublish.org/) relies on Jython as the language to
glue together the view and the model of an MVC framework to
reduce development time dramatically.

Anthony Eden is the President and Lead Developer at Aetrion
LLC which was formed to provide development support for
organizations utilizing open source projects. Anthony has
been a Java developer for over 7 years and a recent Python
crossover. Anthony develops numerous open source projects,
including JPublish, a web publishing and application
framework and the Open Business Engine, an open source
workflow engine.

Track 1

Pattern Experiences in C++, Mark Radford
day: 1, time: 10:30

My first contact with patterns was when I first read the "Gang
of Four" book in 1996. Six years later I revisit the GoF book
and several other books about patterns on a regular basis. I
find patterns a powerful tool in software development, and not
just as a source of solutions to problems - seeing applications
of known patterns leads to the increased confidence that, in
hindsight, problems have been solved in ways already known
to be effective!

This talk is about my experiences with patterns - taken from
the GoF book and from other sources - over the last six years,
and it falls into three parts. First a brief introduction to
patterns, and an overview of those participating in the rest of
the talk. Second my experiences of learning about patterns.
Finally, I will present assorted experiences of implementing
and using patterns in my C++ software development work.

Studied Maths and Physics at Trent Polytechnic, Nottingham,
graduating in 1986. Having found the computing part of the

course more interesting embarked on a career in software
development, using a variety of languages and platforms -
e.g. VAX/VMS, Pick, Windows, Fortran-77, C, C++ and Java -
over the last fifteen years.

Independent since 1997, having initially specialised in
Windows development using C++ and MFC, moved on to
specialise more in C++ and object oriented design working on
a variety of developments including both distributed and
embedded systems.

Member of the BSI C++ panel since November 1998, and
occasional member of the UK delegation to ISO meetings.

Inside Security Checks and Safe Exceptions, Brandon
Bray
day: 1, time: 2:00

Buffer overrun attacks continue to be the leading security
issue facing the software industry. In this talk, you will learn
the details of specific methods attackers use to exploit buffer
overrun vulnerabilities, from inserting arbitrary code to
hijacking function pointers to hijacking the exception handling
mechanism itself. Using Visual C++ as a concrete example,
you will learn how C++ compilers can reduce or even
eliminate different classes of security attacks, how the VC++
implement security checks and safe exceptions, and how the
mechanisms work to make software more robust against
attack.

Brandon Bray is the program manager for the Microsoft Visual
C++ compiler front-end and language team. Prior to working
at Microsoft, Brandon came from Cornell University where he
concentrated in advanced programming language design and
compiling for high performance architectures.

C++ & Multimethods, Julian Smith
day: 1, time: 4:00

I think that language support for multimethods could simplify
some common programming tasks, and that the lack of
support for multimethods in most programming languages has
lead to inferior ad-hoc solutions being adopted and
standardised, with little recognition that there can be a better
way. A couple of examples are GUI event dispatching (Win32
message maps, Qt signals/slots), and internationalisation
support. Multimethods also enable freedom from rigid
interface definitions (for example they allow the equivalent of
virtual functions to be added to any existing class); this
freedom can be misused, but is sometimes very useful -
consider how useful traits classes are when used to embellish
existing types. Finally, I may talk about how multimethods can
be used as part of a TeX-style typesetting engine, if some
experiments in this area workout.

I live in Oxford in the UK, where I work as a contractor. I've
worked for various companies in the last 6-7 years, did a PhD
in Cognitive Psychology at Edinburgh University, and studied
Physics as an undergraduate at Oxford University. I've written
Cmm, a C++ language extension/translator that adds
Multimethods to C++, and I wrote an article about Cmm and
Multimethods in Overload, April 2001. Other info is at
http://www.op59.net

C++ Threading, Kevlin Henney
day: 1, time: 4:00

A lot has been written about multithreading, C++ and
multithreading in C++. There have a number of different
higher-level threading APIs written and proposed. Some are
influenced by object models that are not necessarily
appropriate to C++'s own idioms, and some of them suffer
from looking too obviously like API wrappers, in spite of their
specific API independence.

This talk starts from basic principles to develop a different
model for threading in C++. It is simple, idiomatic and generic,
and its thinking is more obviously unchained from the view of
thread objects as C API wrappers.

Kevlin Henney is an independent software development
consultant, which covers the range of sins from development
through mentoring and reviewing to training. The focus of his
work is in programming languages, OO, CBD, UML, patterns
and software architecture.

He is a regular columnist for C/C++ Users Journal, Application
Development Advisor and JavaSpektrum, and a former
columnist for a couple of magazines that have gone to the
wall (C++ Report and Java Report). He contributes to other
magazines, including Overload... and other magazines that
have gone to the wall (e.g. EXE). He'd like to think that there
isn't a causal connection. He is also a regular speaker at
conferences in Europe and the US.

, Hillside Europe, C++ (BSI and ISO) and C (BSI).

Template metaprogramming in Haskell, Simon Peyton
Jones
day: 2, time: 10:30

In this talk I will draw together two brilliant ideas: the rich but
wild world of template meta-programming of C++, and the
elegant garden of functional programming. Functional
languages have served as a wonderful laboratory in which to
explore and develop language ideas, such as polymorphic
type systems, garbage collection, and so on. Template
meta-programming has been such a success in C++ that it
seems natural to try to transplant it into the context of a
higher-order, typed functional programming language, and
explore its properties there.

In this talk I will describe how we have done this for the
functional programming language Haskell. I will not assume
that you already know Haskell, but I hope to leave you with
some idea of what Haskell is and why I love it. Our Template
Haskell project is at a fairly early stage, but the strange
perspective of functional programming may perhaps leave you
with a different view of templates in C++.

Simon Peyton Jones is a researcher at Microsoft Research,
Cambridge, where he has been since 1998. Prior to that, he
spent nine years as a Professor at the University of Glasgow.
His research interests are centered on the design,
implementation, and application of programming languages,
especially functional languages such as Haskell. He leads the
team that developed and supports the open-source Glasgow
Haskell Compiler (GHC). Home page:
http://research.microsoft.com/~simonpj

Secrets and Pitfalls of Templates, Nicolai Josuttis
day: 2, time: 2:00

(co-presented with David Vandevoorde)

Although templates have been part of C++ for well over a
decade (and available in various forms for almost as long),

they still lead to misunderstanding, misuse and/or
controversy. However, the effective C++ programmer should
know about some important C++ template issues that are not
widely known. This talk presents some of them.

Nicolai Josuttis (www.josuttis.com) is an independent systems
architect, author, and consultant. He designs mid-sized and
large software systems for the telecommunication, traffic,
finance, and manufacturing industries. He is well known both
in the C++ Community and to attendees at ACCU
Conferences. He not only speaks and writes with authority
about C++ (being the author of 'The C++ Standard Library')
but is also an innovative presenter.

He has also written other books and articles about
object-oriented software development and programming in
general. He is a partner at System Bauhaus, a German group
of recognized object-oriented system development experts

Metaprogramming and the Boost Metaprogramming
Library, David Abrahams
day: 2, time: 4:00

The Boost C++ template metaprogramming library (MPL) is
an extensible compile-time framework of algorithms,
sequences and metafunction classes. The library brings
together important abstractions from the generic and
functional programming worlds to build a powerful and
easy-to-use toolset which makes template metaprogramming
practical for real-world environments. The MPL is heavily
influenced by its run-time equivalent – the Standard Template
Library (STL), a part of the C++ standard library. Like the STL,
it defines an open conceptual and implementation framework
which can serve as a foundation for future contributions in the
domain. The library's fundamental concepts and idioms
enable the user to focus on solutions without navigating the
universe of possible ad-hoc approaches to a given
metaprogramming problem, even if no actual MPL code is
used. It also provides a compile-time lambda expression
facility enabling arbitrary currying and composition of class
templates, a feature whose runtime counterpart is often cited
as missing from the STL. This talk explains the motivation,
usage, design, and implementation of the MPL with examples
of its real-life applications, and offers some lessons learned
about C++ template metaprogramming.

David Abrahams is a founding member and moderator of
Boost, and an active member of the wider open-source
community. He has been an ANSI/ISO C++ committee
member since 1996, when he developed a workable theory of
exception-safety and an exception-safety specification for the
C++ standard library. In his 14-year career he has developed
applications for the desktop and embedded devices in the
fields of music software, speech recognition, and circuit
simulation. In 2001 He founded Boost Consulting, a company
dedicated to providing professional support and development
services for the Boost C++ libraries and associated tools.

Prying Eyes: Generic Observer Implementations in C++,
Andrei Alexandrescu
day: 3, time: 10.30

The Observer design pattern has many ways of being applied
and very different implementation favoring speed, information
flow, control flow, flexibility. This talk categorizes Observer
implementations and builds a policy-based implementation for
generic Observers. (It also offers a sneak preview into
Andrei's upcoming book, The Return of C++.)

Andrei is a world-class expert in software development using
C++. In the C++ community, he is best known for his book,
Modern C++ Design (Addison Wesley, 2001). Also, Andrei is
a former columnist for the C++ Report, a columnist for C/C++
Users Journal, and a sought-after speaker at conferences
worldwide.

After working in large-scale projects ranging from financial
software on Wall Street to networking software to user
interfaces, Andrei is pursuing a Ph.D. in Computer Science at
University of Washington.

Reflective Metaprogramming, Daveed Vandevoorde
day: 3, time: 2:00

We're nearing one decade of template metaprogramming in
C++. In that decade several metaprogramming challenges
have been resolved, several others have been found
unsolvable using template-based techniques, but perhaps
most of all, metaprogramming has been found to be a sound
tool for program development. Furthermore, reflection
appears to be a very desirable facility in the
metaprogramming arsenal. In this talk I will sketch a complete
reflective metaprogramming language extension for C++. The
ideas underlying this extension draw from C++ template
metaprogramming experience and from a personal research
language called Xroma.

David Vandevoorde is an engineer at the Edison Design
Group, where he codeveloped the first 100% ISO-compliant
C++ compiler. He is an active member of the ANSI C++
Standards Committee, and a cofounder of the newsgroup
comp.lang.c++.moderated. He is the author (with Nicolai M.
Josuttis) of "C++ Templates: The Complete Guide". A
graduate of the Brussels Free University and the Rensselaer
Polytechnic Institute, his interests include algorithm
development, programming languages, and teaching. See
www.vandevoorde.com.

Binding C++ to Python with the Boost Python Library,
David Abrahams
day: 3, time: 4:00

In many ways, the Python language makes a perfect
complement to C++: as an interpreted, dynamically-typed
language it allows the programmer to quickly and compactly
build large-scale applications that apply idioms from C++
generic programming. C++ and Python can be combined in
several popular ways: for example C++ can be used to
provide high-performance core components for Python
applications, or Python can be used as a plug-in or extension
language for applications written in C++. Effectively binding
Python and C++ requires a deep understanding of the
internals and idioms of both languages. The Boost Python
library is a framework of tools which allow users to quickly
expose C++ types and functions to Python by writing a kind of
simple "Interface Definition Language" (IDL) directly in C++
code. By using the compile-time capabilities of C++ and the
techniques of metaprogramming, Boost.Python avoids many
of the problems of other wrapping systems, which must
implement most of the internals of a C++ compiler to work
automatically. The library also includes facilities for
manipulating Python objects from C++ using a "Python-like"
interface.

Multi-Platform Software Development; Lessons from the
Boost libraries, Beman Dawes
day: 4, time: 10:30

Developing software in one platform or environment
(operating system, compiler, company, department, whatever)
and then later trying to port it to some other platform is often a
recipe for disaster. Yet experience both at Boost and with
industrial applications shows that certain software
development practices can remove much of the risk from
cross-platform development. Learn about these practices and
how to apply them to real-world software development.

Although based on experience with C++ cross-platform
efforts, much of the talk focuses on development practices
which apply to any programming language.

Before the conference, please send a description of your
cross-platform problem to <> so solutions can be discussed
during the talk.

Beman is the founder of Boost (www.boost.org), the source of
portable free C++ libraries and a proving ground for future
C++ Standard Library additions. He has been a voting
member of the ANSI/ISO C++ Standards Committee since
1992, and chaired the Library Working Group for five years.
He develops portable C++ libraries for a living, and is the
author of the StreetQuick geographic atlas library.

Sauce: An OO recursive descent parser; its design and
implementation., Jon Jagger
day: 4, time: 2:00

This talk recounts the design, patterns in, and implementation
of Sauce. Sauce is an extensible tool that you can use to
detect syntactic and lexical fluff in your code. (Sauce came
into being when one day I imagined a tool that could check all
your binary operators were braced by matching whitespace.
All the lint tools I could find were purely syntactic!) I will also
discuss the differences encountered, and lessons learned,
when implementing Sauce in more than one language (C++
and C#).

Hi, I'm Jon Jagger, an independent software
consultant/trainer/mentor specialising in C#, C++, Java, OO,
design, patterns, and process improvement. I am a UK C#,
C++, and C standards panel member and a regular
contributor to the ACCU Overload journal. My interests
include training excellence, design, problem solving, and
monty python (required knowledge for all software
developers). I'm very very good at sleeping, breathing, and
drinking. All of which I practice a lot.

Recently:

I wrote most of a 5 day instructor led training course on C#
that now forms part of the official Microsoft curriculum
(Introduction to C# Programming, course 2124).

I co-authored (with John Sharp) the Microsoft Press book
Visual C#.NET Step by Step which is getting good reviews on
Amazon.

I converted the ECMA C# language specification into a
hyperlinked HTML presentation using PERL, XML, and XSL
(available from my website).

Honey, I Shrunk the Threads: Compile-time checked
multithreaded transactions in C++, Andrei Alexandrescu
day: 4, time: 4.00

Would you like to have your compiler tell you "Error: This call
will lead to deadlock"? This talk presents new idioms for C++
multithreaded programs, including multithreaded transactions
involving multiple objects. You can have your compiler detect
not only race conditions, but deadlocks as well.

Track 2

What is the Type of std::toupper()?, Gabriel Dos Reis
day: 1, time: 10:30

The template-argument deduction facility found in standard
C++ template machinery heavily depends on the ability ro
ascribe types to expressions. That some expressions in C++
don't have (native) types can unncessarily complicate ways in
which some natural expressions may be written in a generic
framework. This talk explores some points in the space of
paths connecting functions and function objects, all in the
framework of polymorphism.

 Former student of the École Normale Supérieure de Cachan
(France), Gabriel Dos Reis got his PhD in Mathematics
(Differential Geometry) at Université de Paris VII in 2001. His
research interests include applying numerical and
computational methods in Geometry and especially in the
construction of constant mean curvature surfaces. He began
lobbying for C++ in scientific computations since 1996 when
he worked on the European scientific project FRISCO
(Framework for Numerical and Symbolic Computations) at
INRIA Sophia Antipolis (France). He is the author of the
numerical components of the new GNU libstdc++-v3.
Currently, he is holding a post-doctoral position at the
GALAAD project of INRIA Sophia Antipolis. He is also the
co-maintainer of libstdc++-v3.

Studying at a Distance, Panels
day: 1, time: 2:00

The objective of this panel is to explore, with the audience,
ways in which 'distance learning' can be made to work
effectively. The main thrust of this panel will be considering
what students can do to improve the value they get from
learning this way.

The growth of the Internet, email and other forms of electronic
communication has added new dimensions to the traditional
mechanisms of distance learning. However the drop out rate
continues to raise questions as to how students can get full
benefit from such study methods.

Plenty People Programming: C++ Programming in a
Group, Nicolai Josuttis
day: 2, time: 10:30

A session, where the audience writes some little programs
(using me as the "typing system") for tasks provided by me
and where we try out different compilers. Thus, I give a task
and wait for input from the audience to put it into the laptop.

And we see, what happens when we run different compilers
(such as EDG, G++, Visual C++).

Being a Mentor, Panels
day: 2, time: 2:00

This panel will focus on all aspects of mentoring, both in
person and remotely as part of a distance-learning project.
The panel will draw on a wealth of personal experience to
challenge the audience to consider how they can become
mentors, and if they already are, how they can better meet the
needs of those they are guiding.

GNIRTS ESAC REWOL - Bringing the UNIX filters to the
C++ iostream library., JC van Winkel
day: 2, time: 2:00

The UNIX technique of chaining filters to manipulate streams
of data can now also be used in C++ in combination with the
iostream library. A framework allows users to build ostream
objects without having knowledge of the iostream structure.
These ostream objects build upon existing ostream objects,
but manipulate the data being output.

Examples of these filtering techniques are: an
uppercase/lowercase filter, an ``logging'' filter, that precedes
every line with a timestamp, and a ``tee'' filter that allows
multiplexing output to several ostreams.

JC van Winkel has a B.S. and an M.S. in computer science
(the M.S.from the Vrije Universiteit Amsterdam). He works at
AT Computing, a small courseware and consulting firm in
Nijmegen, the Netherlands. There he teaches UNIX and
UNIX-related subjects, including C++. He has presented C++
tutorials at nine OOPSLA's since 1993.

A common vendor ABI for C++ – GCC's why, what and
what not, Nathan Sidwell
day: 2, time: 4:00

The itanium C++ ABI has been adopted by a number of
compiler vendors to provide compatibility between itanium
compilers. The generic parts of the ABI can be used on other
architectures, and GCC took the opportunity to revise its C++
ABI for all targets. The previous ABI had grown by
agglomeration as C++ matured. Now there is a complete
standard a better ABI can be designed from the ground up.
However, common practice can restrict what can be done.
The talk will cover both how the ABI came about, some of the
design decisions, how it can affect user programs, the
promises it makes, and the promises it does not make. We'll
also demonstrate concrete use of the ABI to build libraries or
tools for cross-modules, cross-compilers, or cross-language
systems.

Short bio:Nathan is a consultant at CodeSourcery, and has
been involved with G++ for around 4 years. Previously he has
worked as a processor architect, before falling into compilers,
and then teaching at the University of Bristol. Prior to that he
pretended to be a physicist, and knows how to use a soldering
iron.

The Roadmap to Generative Programming With C++,
Ulrich Eisenecker
day: 3, time: 10:30

Today most applications are developed as individual systems.
Very often variants of these systems are required eventually,
because of the needs of different customers and diverse
contexts of use. Thus, following an approach for engineering

software system families from beginning is of significant
advantage. Generative Programming is a software
engineering paradigm based on modeling software system
families such that, given a particular requirements
specification, a highly customized and optimized intermediate
or end-product can be automatically manufactured on demand
from elementary, reusable implementation components by
means of configuration knowledge.

Because of its specific implementation of generic
polymorphism, C++ templates offer a unique way for static
metaprogramming. This allows the implementation of
advanced compile-time configuration generators that are at
the heart of Generative Programming.

After introducing the fundamentals of Generative
Programming, techniques for implementing domain specific
languages, configuration generators, and elementary
implementation components in C++ will be highlighted.

Finally, I will present an overview of how to add powerful
genericity to non-template languages using a frame-processor
thus enabling Generative Programming.

Dr. Ulrich W. Eisenecker is a professor for computer science
at the University of Applied Sciences Kaiserslautern,
Zweibruecken. He spent nearly a decade in industry and
closely cooperates with industry today. For some time he was
national agent of ACCU in Germany. He edits
KOMPONENTEN-Forum, a regular supplement of the journal
OBJEKTspektrum, dedicated to component-technology, and
co-authored with Krzysztof Czarnecki the book "Generative
Programming: Methods, Tools, and Applications" published by
Addison-Wesley.

Advanced Template Issues and Solutions (double
session), Herb Sutter
day: 3, time: 4:00

This in-depth talk assumes you already know the basics about
template programming, including specialization, and have a
basic understanding of Koenig lookup. It delves into specific
nifty techniques you can use and subtle pitfalls you need to
avoid, including answers to the following questions:

First, to get our feet wet, we'll look at a not-well-known corner
of Standard C++ templates: What are dependent names, why
does the standard mandate two-phase template name lookup
in the first place, and how does the two-phase lookup work?
Most importantly, how can you make it work for you, and how
can you account for the fact that today's compilers do the
two-phase lookup variously well?

Second, a look at a cutting-edge issue that has only recently
been discovered and debated among the inner circle of
world's top C++ library writers, about writing templates safely:
Why do you sometimes want and sometimes not want to have
Koenig lookup work in your templates, and how can you turn it
off when you don't want it? The issues involved can be subtle,
they affect your templates today, and they have only this year
become better understood.

Herb Sutter (www.gotw.ca) is the author of more than 160
technical articles and of the widely acclaimed books
Exceptional C++ and More Exceptional C++
(www.gotw.ca/publications). Herb is convener and secretary,
respectively, of the ISO and ANSI C++ standards committees,
contributing editor and columnist for C/C++ Users Journal
(CUJ), C++ community liaison for Microsoft, and former
editor-in-chief of C++ Report.

Generic Build Support – A Pragmatic Approach to the
Software Build Process, Randy Marques
day: 4, time: 10:30

Software Engineering was always so simple: A few directories
here, a makefile there. Cup of coffee with the guys.

Now suddenly most of my builds fail, builds are not
reproducible and a re-build generates a different executable.
Something wrong with the coffee?

Or are we with too many people trying to build twenty versions
of one million lines of code for three platforms the same way
we used to build two versions of 4000 lines of code for one
platform? Do we really think that with the experience of
building a tool-shed we only need to extrapolate to be able to
build a skyscraper?

Do we really need a new dedicated directory- and
make-structure for every new project?

Or can we state, in analogy of the construction business, that
the build process of a building is always the same
irrespectively if you are building a concert-hall, hospital or
town hall?

As the title says: a pragmatic approach. No theories. About
directory-structures, SCM, makefiles, Compilers and Linkers.

Open to anyone with a basic knowledge of Software
Engineering.

Randy Marques is a CASE-Consultant with AtosOrigin –
Technical Automation – In-Product Software. Originally from
Curaçao, an island in the Caribbean, he now lives in the
Netherlands. His main jobs concern the usage of the
C-language, Code Quality Assessments, Coding Standards,
Code Architecture and Build Management especially in the
area of Embedded Software. In general he tries to fix the gap
between SPI (CMM) and the work floor (Programmers) He is
also a member of the Dutch and International SC22/WG14
Committee and a teacher of the ‘Safer C’ course developed
by Les Hatton.He started with Software Engineering in 1971,
he is a real ‘old hand’ with long-term experience of all levels of
Software Engineering. The first computer he worked on was
an IBM 1410 with 4K of core memory, at that time one of the
biggest in Europe.In his spare time he is a father of 3 kids, a
diving instructor and on non-rainy days he likes to take his
Kawasaki Vulcan 750 out for a spin.

The Stability of the C++ ABI, Steve Clamage
day: 4, time: 10:30

As C++ evolved over the years, the Application Binary
Interface used by a compiler often needed to change in order
to support new or changing language features. Programmers
expected to recompile all their binaries with every compiler
release. An unstable ABI is incompatible with the Solaris
philosophy of shared libraries, and is a nightmare for library
and middleware vendors. With the advent of the C++
Standard in 1998, there is new hope for a stable C++ ABI on
Solaris platforms. This paper addresses the main issues for
ABIs using our experiences with Sun C++ on a Solaris
Platform.

 Steve Clamage has been involved in C++ compilers since
1980. He is responsible for C++ compiler development at Sun
Microsystems. He is chair of J16, the ANSI C++ Commitee,
and moderates the comp.std.c++ newsgroup.

Fun and Functionality with Functors, Lois Goldthwaite
day: 4, time: 4:00

Functors, or function objects, bring power and flexibility to
C++'s Standard Library, but their contribution is too often
overlooked or underestimated. This talk explains what
function objects are, how to create and use them, and what
pitfalls to avoid. In passing, there is also some discussion of
ways to achieve similar functionality in other programming
languages.

Lois Goldthwaite has been programming professionally since
1983, specialising in C++, C, and Java. As convenor of the
BSI C++ panel since 1997 she represents the UK at
international standards meetings. She is also convenor of
BSI's Posix and C# panels, a member of the C panel, and
ACCU's Standards Officer. After a lengthy period of steady
employment, she has returned to being a computer
mercenary. For recreation she takes out her aggressions on
the squash court.

Track 3

Linguistic Variables: Clear Thinking with Fuzzy Logic,
Walter Banks
day: 1, time: 10:30

Linguistic variables represent crisp information in a form and
precision appropriate for the problem. For example, to answer
the question "What is it like outside?" one might observe "It is
warm outside." Experience has shown that if it is “warm” and
the time is mid-day, a jacket is unnecessary, but if it is warm
and early evening, it would be wise to take a jacket along (the
day will change from warm to cool). The linguistic variables
like “warm”, so common in everyday speech, convey
information about our environment or an object under
observation. We will show how linguistic variables can be
defined and used in a variety of common applications,
including home environment, product pricing, and process
control. The use of linguistic variables in many applications
reduces the overall computation complexity of the application.
Linguistic variables have been shown to be particularly useful
in complex non-linear applications. Linguistic variables are
central to fuzzy logic manipulations, but are often ignored in
the debates on the merits of fuzzy logic.

Walter Banks is the president of Byte Craft Limited, a
company specializing in software development tools for
embedded microprocessors. His interests include highly
reliable system design, code generation technology, and
programming language development and standards. Walter
Banks is a member of the Canadian delegation to ISO
WG-14, where he co-authored WDTR 18037 (a technical
report on C language extensions to support embedded
processors). He has co-authored one book, and numerous
journal and conference papers.

Coding Standards – Given the ANSI C Standard why do I
still need a Coding Standard, Randy Marques
day: 1, time: 2:00

A few years ago, there was an advertisement of BMW on the
British television.

The text was something like: "Contains more computing
power than it took to take man to the moon". If you are of the
opinion that this is good, you should not miss this
presentation.

It is about the flaws in the definition of the C-language, about
flaws in Compilers, about flaws in management decisions
concerning choice of processors and compilers, about flaws in
how programmers handle the language and about what you
can do to keep the damage to a minimum.

It will not be a theoretical talk but real-life experience.

Open to anyone with a basic knowledge of C-programming.

The Organisation Strikes Back, Alan Griffiths
day: 1, time: 4:00

In "Reworking the Organisation" (presented at the ACCU
Conference in 2002) Alan described his first six months at a
new employer in the form of a case study.

While there were some early gains there were a number of
import questions unanswered: What would happen next?
Were the changes dependent on Alan's continuing
involvement? How would management intervene? How well
would the changes be internalised by the organisation?

In "The Organisation Strikes Back" Alan and Sarah extend the
case study to cover a two-year period and (plus some of the
history) and, in the process, answer these and other
questions.

Alan Griffiths (alan@octopull.demon.co.uk) is a long-standing
contributor to the ACCU journals and mailing lists and chair of
the ACCU. He is also a member of the BSI C++ Panel
(although not a very active one). In working life Alan
(alan.griffiths@microlise.com) is "Software Development
Champion" at Microlise Limited. He has responsibility for
introducing both developers and management to more
effective ways of developing computer software. For most of
Alan's technical articles and various other goodies visit:

Design and Implementation of the Boost Graph Library,
Jeremy Siek
day: 2, time: 10:30

The Boost Graph Library (BGL) offers an unprecedented level
of flexibility and power to its users due to its generic
programming and generative design. This talk describes the
motivation for the core abstractions of the BGL. We will take a
close look at a key family of graph algorithms, and how
generalized version of these algorithms came to be written as
function templates in the BGL. We then will switch focus to the
graph data structures provided in the BGL, and look under the
hood of the adjacency_list class to see how generative
programming techniques were applied to create this
Swiss-army knife of a graph class.

Jeremy Siek is a Ph.D. student at Indiana University
Bloomington, studying programming languages in the Open
Systems Laboratory directed by Dr. Andrew Lumsdaine.
Jeremy is a coauthor of several libraries that have become
part of Boost, including the Boost Graph Library and Boost
Iterator Adaptor Library. Jeremy is a coauthor of the book
"The Boost Graph Library: User Guide and Reference
Manual". His master's thesis, the Matrix Template Library,
applied generic programming to numerical linear algebra. On
the industry side of things, Jeremy did a one-year internship
under Alexander Stepanov in the SGI C++ compiler and

libraries group, and a summer internship with Bjarne
Stroustrup at AT&T Research Labs.

Concurrent Programming in Java (double session),
Angelika Langer
day: 2, time: 2:00

Support for programming with multiple threads is a core
feature of the Java programming language, yet multithreading
issues are ignored by many if not most Java developers. Even
innocent classes that do not actively start and manage
threads should be prepared for use by multiple threads, which
raises issues of thread-safety and synchronization.

In the first]art of this talk we give a fairly quick refresher of the
basics of thread-safety and concurrency control in general
and the Java-specific features in particular. We will also
address typical problems such as the nested monitor problem
and its potential for deadlocks and we will learn how to apply
common techniques such as the conflict set method.

Next we tackle some of the more challenging details of the
Java thread API. Specifically, we look into thread termination
due to an interrupt request or due to an uncaught exception.
We will answer questions such as: How does thread
interruption work? Why are the methods suspend() and
resume() deprecated? What do we do instead? How do we
gracefully terminate a thread in response to a thread
interruption? What is the effect of uncaught exceptions on
active threads? How can we avoid that an uncaught exception
prematurely terminates a thread?

Another less commonly known topic is the Java memory
model, which has certain problems with atomicity and
sequential consistency of access to volatile variables. The
Java language specification gives guarantees for volatile
variables, but not all Java implementations actually meet
these requirements. As Java developers we would like to
know which guarantees we can rely on and which areas we
should better avoid.

In the second session we discuss patterns for concurrency
control and how they can be implemented in Java. We will
look into various incarnations of the adapter pattern and will
se which kinds of adapters are relevant in concurrent
programming (immutability adapters, synchonization
adapters). We will learn how to implement a reader-writer
pattern in Java, including the before-after-technique. We will
talk about patterns for thread completion (like future,
callbacks, group proxies).

The tutorial is of interest to Java programmers, but also to
developers who implement concurrent programs in related
languages such as C++.

Angelika Langer is a freelance trainer/consultant working and
teaching in the area of object-oriented and component-based
software development in C++ and Java. She is a recognized
speaker at conferences world-wide, co-author of the book
"Standard C++ IOStreams and Locales" and author of
numerous articles about C++ and Java. A more
comprehensive biography can be found at
http://www.langer.camelot.de/AboutMe/CV.html.

The Embedded C Extensions to C, Willem Wakker
day: 2, time: 2:00

Embedded C is the name of a language extension to currently
being formalized in a technical report by the ISO. Embedded
C originates from an industry initiative called DSP-C
developed by ACE. It aims to provide C application

programmers with access to common performance increasing
features of processors used in the domain of DSP and
embedded processing.

Embedded C adds fixed-point data types, memory qualifiers
and hardware I/O to C. Fixed point data types are frequently
used in embedded applications and routinely present in DSP
processors. Embedded C adds this primitive type to allow the
compiler to make the connection between the two. Similarly,
multiple memory banks, typically present in embedded
processors to provide the ALU with enough bandwidth, can be
addressed using memory qualifiers. Hardware I/O provides a
standardized abstraction layer for accessing hardware ports
while still allowing for maximal efficiency. This improves
portability of, for example, device driver code.

Embedded C is currently being developed by the ISO C
working group (WG 14) as a technical report. It is not part of
the C language yet. Its aim is to provide common ground for
initiatives that currently exist within the industry to give the
programmer control over certain hardware features. The
report is an important step in streamlining these initiatives and
making the development of application support for these
features more efficient. The technical report is expected to be
ratified in 2003.

The presentation will explain about the meaning and use of
the new language extensions, including examples of their use
and resulting DSP processor code. Additionally, the rationale
behind the design will be discussed, including alternative
proposals that did not make it, and the relation between
Embedded C and C++.

The presentation will discuss the meaning and use of the
language extensions and provide examples of each.
Additionally, the motivation behind Embedded C and the
rationale of certain design decisions will be explained as well
as the status of the technical report. The relation with C++ is
also addressed.

 Willem Wakker has been active in the world of formal
standards and programming language standardisation since
1988. He also has extensive industrial experience in this area
having joined ACE in 1977 and led their compiler
development team until 1995 when he was appointed Director
of ACE's Consulting operation. Willem is currently in WG14
and is the project editor of the Embedded C Technical Report.
It should be noted that ACE defined and introduced the
predecessor of Embedded C, namely DSP-C.

The Timing and Cost of Choices, Hubert Matthews
day: 2, time: 4:00

As programmers and designers, we are contantly make
choices. We think very hard about these choices but how
often do we think about the choice process itself? What are
the consequences of choosing now versus delaying, and
when do we validate those choices? This talk compares the
effects of early versus late binding for code, process and
requirements and shows that there are patterns that relate:
product choices and process choices, binding times and the
timespan of choices, the effects of being able to revisit those
choices later, and the choice of emphasis on error prevention,
removal or tolerance.

Hubert is a freelance software consultant and trainer based in
Oxford. His main areas of expertise are architecture and
design and he has been an architect for a number of clients,
both small and large. He has also given training courses
across the globe in a range of subjects including C++, Java,
UML, EJB, OOA/D, patterns and components. Other areas of

consultancy include technical strategy, architectural audits,
and process issues.

Following a degree and doctorate in engineering at Oxford
(LMH) and a student apprenticeship with GEC in Rugby,
Hubert worked at CERN in Geneva before returning to Britain
to indulge his other passion: singing. Since leaving the Royal
Northern College of Music in Manchester, Hubert has
continued to juggle his two careers as a professional concert
and opera singer and as a freelance software consultant
(including the obligatory dot-com nightmares and other
abortive get-rich-quick schemes).

In his abundant spare time, Hubert coaches rowing, dances
salsa and drives too fast.

Design Patterns in C++ and C# for the Common Language
Runtime, Brandon Bray
day: 3, time: 10:30

Writing code for the common language runtime necessitates a
certain number of considerations. Among them are efficiency
in the face of a managed execution environment, verifiability,
and library portability between languages. This talk will
address some of the frequent design patterns used by
programmers familiar with C++ and C#.

Pattern Writing: Live and Direct, Frank Buschmann
day: 4, time: 2:00

Pattern Writing: Live and Direct

The overwhelming majority of developers familiar with
patterns would consider themselves consumers rather than
producers of patterns literature. How would you get started
writing a pattern? And how would you continue? One way to
understand something is to take it apart; another is to make
one. This tutorial aims to do both of these for patterns.

It starts with an anatomical dissection of the common pattern,
and places patterns in the context of a pattern language. The
two presenters then pair-write patterns in an actual pattern
language, switching between writing, making meta-level
comments about the issues encountered, and taking
suggestions and questions from the attendees.

Frank Buschmann is senior principal engineer at Siemens
Corporate Technology in Munich, Germany. His interests
include Object Technology, Frameworks and Patterns. Frank
has been involved in many software development projects. He
is leading Siemens' pattern research activities. Frank is
co-author of "Pattern-Oriented Software Architecture – A
System of Patterns" and "Pattern-Oriented Software
Architecture – Patterns for Concurrent and Networked
Objects"

Track 4

Extreme Hour (XH): (workshop) - Jutta Eckstein and Nico
Josuttis, Jutta Ecstein
day: 3, time: 10:30

Experiencing extreme programming (XP). The XH is "the
smallest project in the world", which lasts an extended hour,
where people experience most of the aspects of XP, but
without actual programming.

Jutta Eckstein is an independent consultant and trainer from
Munich, Germany. Her know-how in agile processes is based
on over ten years experience in developing object-oriented
applications. She is an experienced XP coach and trainer.
She worked with teams of different sizes mainly in the finance
industry to help them using agile processes successfully.
Besides engineering software she has been designing and
teaching OT courses in industry. Having completed a course
of teacher training and led many 'train the trainer' programs in
industry, she focuses also on techniques which help teach OT
and is a main lead in the pedagogical patterns project. She
has presented work in her main areas at ACCU (UK),
OOPSLA (USA), OT (UK), XP (Italy) and XP and Agile
Universe (USA). She is a member of the AgileAlliance
(http://www.aanpo.org) and a supporter of the Manifesto of
Agile SoftwareDevelopment (http://www.agilealliance.org).

What can MISRA-C (2nd Edition) do for us?, Chris Hills
day: 3, time: 2:00

MISRA-C a small coding guide for the UK Automotive industry
has escaped not only from the automotive industry but is now
used worldwide. It has sold at a rate of over 1000 a year in the
last 4 years!

This paper will look at why MISRA-C was needed, what it
gives us and what is new for the second edition. The new
version of MISRA-C will be published in March 2003 but as I
am on the working group I can give an insight into the
changes and the process used to produce what will be the
new version.

 Embedded Engineer. My background covers most types of
non-PC based programming from Unix systems to smartcards
and various forms of electronics. Currently the BSI convenor
for IST/5/-/14 (the BSI's C Standard's Panel to you and me!)
Also a member of the MISRA-C working group. Past papers
presented to the ACCU are at http:// QuEST.phaedsys.org

Using Aspect Oriented Programming for Enterprise
Application Integration, Arno Schmidmeier
day: 3, time: 4:00

Aspect oriented programming is a new but urgently needed
software development paradigm, to modularize tangling code
at all levels.

Aspect oriented programming is widely used for low level
elements like synchronizing, tracing, logging, exception
handling, etc.

But it also unleashes its power in EAI-projects, as it has
proofed in several very successful projects.

Arno Schmidmeier is an independent consultant focusing on
aspect oriented software development and enterprise
application integration. During his very successful time as
Chief Scientist at Sirius Software GmbH, he was responsible
for the commercial adoption of new technologies like AOP. He
deployed several large-scale projects based on AspectJ. He
offers consulting services for use and introduction of AspectJ
in commercial projects.

 He was an independent expert on JSR 90.

How to Handle Project Managers: a survival guide, Barb
Byro
day: 4, time: 10:30

A practical guide to project managers. Having a good working
relationship with your project manager can make or break a
project. We'll discuss strategies to evaluate and work with
project managers. Not all project managers appreciate
programmers, but they can be trained. We'll also touch on
how this can make ISO compliance less onerous.

Barb Byro is a project manager who has spent the last 3 years
managing Telecom network and collocation projects for
customers of Metromedia Fiber Networks in both New York
and London. She's also lead ISO compliance teams, devising
practical strategies to make ISO into a useful tool rather than
a time wasting, irrelevant exercise. Barb's also managed
online computer game software development projects for over
10 years. In that capacity she's worked with paid and
volunteer staff, both in-house and external.

The Future of Programming Languages, Goldfish Bowl
day: 4, time: 2:00

Changes in hardware have challenged language designers to
consider adding new features to languages. On the other
hand, issues of backward compatibility make changes to
languages unpopular.

In this interactive session the audience under the guidance of
a 'management team' will discuss ways of resolving the
tension between the needs of the future and those of the past.

Guidance will be given at the start of the session to those who
have not previously experienced this type conference item.
You will be able to remain in a purely observational role if you
wish but opportunities for active participation are an essential
ingredient of a 'goldfish bowl.'

Agile Enough?, Alan Griffiths
day: 4, time: 4:00

The group of development methodologies recognised under
the banner "Agile" have gained a lot of attention recently.
They are clearly successful for a range of problems, but is this
range broad enough?

My experience is that there are many projects for which "key"
process elements cannot be followed, for technical, business
or organisational reasons. Indeed, most of the projects I've
worked on fall into this category.

How important are these types of projects? Can they really be
forced into an "Agile" straitjacket? Can they be delivered
effectively?

Is "Agile" sufficiently liberal in scope?

Track 5

The Lambda Library : Unnamed Functions for C++, Jaako
Jarvi
day: 3, time: 10:30

More often than not, small and simple function objects are
needed solely to be passed to an STL algorithm, having no
further use in the program. Defining new functions or classes
for just this purpose is verbose and adds unnecessary names
to the program. The STL programming style would greatly

benefit from lambda abstractions: unnamed functions that can
be defined where they are used, at the call sites of STL
algorithms. As unnamed functions are not part of core C++,
the standard library provides

binders, adaptors and the set of elementary function object
templates (less, negate, ...) as an alternative. However, these
tools have many restrictions and leave much room for
improvements.

The Lambda Library (LL) offers these improvements,
providing a rich set of tools for defining unnamed functions,
with an intuitive syntax.

This talk explains why LL makes using STL easier, simpler
and more fun.

The talk describes the main features of the LL, and outlines its
design and implementation.

Jaakko Järvi has a Ph.D. in computer science from the
University of Turku, Finland. He is currently a post doctoral
researcher in the Open Systems Laboratory, one of the
Pervasive Technology Laboratories at Indiana University. His
research interests include programming languages and
generic programming. Besides academia, Jaakko has worked
as a software engineer at ABB Corporate Research, and as
the CTO of Atuline Ltd., a university spin-off company on its
way to maturity. Jaakko is the principal author of the Boost
Tuple and Lambda Libraries and participates actively to the
C++ standardization work.

Guido van Rossum Interview

 Guido van Rossum is well-known as the creator of the Python
programming language and has steered its development for
over 10 years

 The last time I hand-wrote a real letter was ...

too long ago to remember. Honest.

 Its still a shock when ...

journalists can't spell "it's".

 (Whoops ed.)

 I can still remember ...

when computers used punched cards. My biggest creation at
the time filled up an entire box (2000 cards).

 I first realised I was in the right career when ...

I got a part-time job as a system programmer while still in
college, the first one I ever applied for.

 There's terrific snobbery ...

amongst many Linux users, who scoff at all things Windows.
Not that I'm a Windows fan (far from it), but some Windows
things are well done, and it's important to learn from those (as
well as from Windows' mistakes).

 People can waste their lives ...

tweaking HTML.

 My worst sporting moment at school was ...

every sports event I ever participated in.

 The most beautiful thing I saw today was ...

my son Orlijn, sleeping.

 Plants in my house survive for

about 15 minutes.

 I couldn't live without ...

my wife, Kim.

 I got into trouble at school ...

for not paying attention when I was too far ahead of the rest of
the class in math and physics. :-)

 I believe your son, Orlijn, recently turned one year old.
(Congratulations)

 Apart from sleep deprivation, how has he changed your
life?

Thinking about Orlijn's future made me view my own future in
a different way. The responsibility for such a beautiful person
made me rethink my priorities.

 Python has grown enormously since 1991, and it seems
to benefit from work from a wide variety of people. What
was it like realising that people, even on the other side of
the world, were interested in your work, - that it could
grow into more than "your" project.

It sunk in relatively slowly, but in 1994, it really dawned on me
when there was a long thread in comp.lang.python about what
would happen "if Guido was hit by a bus." (You can search
Google to read the thread. :-) I began to realize that Python
was more important than my "day job". When, as a result of
that discussion, the first Python workshop ever was
organized, I was very excited to meet some of the faces and
voices belonging to the people who weren't much more than a

name and an email address to me.

 FORTRAN is often hailed as the first high level computer
language, and is 45 years old. Would you still want to be
involved in computer languages when Python reaches
that watermark? And, given how far we have come since
1957, do you have any idea what languages will look like
in 2036?

I would love to be around then, and I hope that Python will
have made a mark on the design of future languages. I doubt
that I'll be designing the "next" big language any time soon,
even if I tried: creating a hit like Python was pretty much a
lucky shot. I don't mean to say that I don't deserve the
success, but I believe that many other factors besides the
technical quality of a design contribute to its ultimate success.
Python is not particularly innovative, but its design is "well
rounded" in a number of ways. I like to call it the "Goldilock"
language: not too hot, not too cold, but juuuuuuust right. But
that's only in hindsight: Python landed in quite a different
niche than what I had in mind when I first designed it. For
example, I wasn't thinking of embedding Python in other
applications, I didn't aim it to be an educational language
(even though it was based on an educational language, ABC),
and I didn't plan for it to be the main development language
for large systems like Zope.

 You have acted as a guiding hand for Python for ten
years, but some people disagree with the directions
choosen, and are occasionally less than polite in pointing
this out. How does this affect you?

I tend to get less than polite in my responses. That doesn't
always work, though, and I've had to accept the fact that in a
large enough community, nothing remains uncontroversial.

 Given the choice between life with Python and your
family, and life as a Pina Colada tester on a beach in the
Carribean with your family, which would it be?

Python, definitely. I'm not a beach person. My wife is, though,
so we spend some of our vacation doing "beachy" things. Our
first "geek cruise" was a big success for all three of us, and
I've already signed us up for another one next year.

 The PC, whilst seeming ubiquitous, is still unused by 5.6
bn of the Earth's population. How do you see the other
5.6bn progressing - will we all have a Dell or is there
another way?

I think it's inevitable that the others will want PCs too, and
since we tend to give ours away when they're only 2-3 years
old, they won't be behind the curve too far. They'll probably
run open source software, because they can't afford to pay
Microsoft. So there's a social side to the open source
movement (besides fighting monopolies).

Eventually I expect we'll settle on a different form factor, or
form factors, depending on use: handheld organizers will
become ever more powerful and popular, and where larger
input or output areas are needed, maybe tablets (which won't
look much like the tablet prototypes that were launched
recently). For household use, the tv-set form factor will
probably survive, for playing games, watching movies, and as
a base station for the portable devices to back up their data.
Eventually computers will have many different form factors,
determined by considerations of ergonomics rather than ease
of manufacturing. I don't believe in the widespread use of
"combo" computers: cell phones that are also organizers,
MP3 players, cameras, games, wireless email access, and so
on. While for some people it makes sense to carry only one
brick with all that functionality, usually the combos don't

perform any function as well as more focused devices, and it's
usually difficult to use two different functions at once. I'll stop
now, since I read most of what I said here in the Sunday
Washingington Post. Yes, I use a printed newspaper as my
main information source, even about technical stuff that's in
the periphery. I don't watch tv, nor do I read slashdot; I do
listen to public radio. And that's it for rambling. :-)

 Guido van Rossum was kind enough to allow himself to be
interviewed by Paul Brian. Thanks.

Martin von Loewis Interview

Martin von Loewis is well-known as a Python contributor and
c.l.p. regular.

 The last time I hand-wrote a real letter was ...

... for Christmas. I don't see hand-writing personal letters as
antiquated, but I would hope that Word-written-then-printed
letters go away one day, and get replaced with email. I find
that I write most of these to authorities which haven't heard
about eGovernment.

 Its still a shock when ...

... I see people answering a phone call on the street.

 I can still remember ...

... never hoping to travel to the Western world one day. I enjoy
the grace of "late birth", where the iron curtain fell shortly after
I finished school.

 I first realised I was in the right career when ...

... I managed to impress my physics teacher with an
assembler program I entered into a Z80 machine after I
assembled it to machine code on paper.

 There's terrific snobbery ...

... having your employer pay for non-business things you do
on a business trip.

 I realised the meaning of Schadenfreude when ...

... I was a kid. This being a German word, I can't think back
that far.

Nice answer.:-)

People can waste their lives ...

... thinking about retirement.

 Artists should always ...

... consider themselves as servants of their audience.

 If I could change places with anyone it would be ...

... Ruud Lubbers (the current UNHCR).

 My worst sporting moment at school was ...

The entire subject of physical education was terrible.

 Plants in my house survive for

... two years. It actually got better recently as I got more plants
that can stand being forgotten for a couple of weeks...

 I couldn't live without ...

... television.

Aha - an honest answer.

I got into trouble at school ...

... because I said I did not want to join the army. They were
effective in convincing me to change my mind.

 You serve on the board of the PSF. Do you ever feel that
the politics gets in the way of the language (not
necessarily between board members, but the issues
normal users have).

Licensing is in the way often in surprising ways. Some
contributions cannot be accepted because of licensing, often
to the surprise of the contributor. This happens rarely, though.
An ongoing issue is that there are so many prior copyright

holders of Python (none of them being Guido van Rossum); I
do hope the PSF can eventually obtain the intellectual
property from those organizations, so that they stop having a
legal standing in the future of Python.

US export restrictions used to be politics that get in the way of
free software in general (Python itself isn't that much
affected); fortunately, those restrictions have be lifted to codify
the de facto practice.

People sometimes term issues of personal dislikes as
"politics", e.g. sympathies and antipathies between
contributors, or of a contributor towards certain technology.
This is not the business of the PSF: all technical aspects of
the Python development are dealt with on python-dev.

 FORTRAN is often hailed as the first high level computer
language, and is 45 years old. Would you still want to be
involved in computer languages when Python reaches
that watermark? And, given how far we have come since
1957, do you have any idea what languages will look like
in 2036?

It is difficult to make predictions, especially about the future.

I notice that some old-timers of computer science still provide
valuable contributions to language development, so I hope I
can contribute as long as my contributions are considered as
valuable. However, I don't have any idea of how computers
will work in 2036. I do think the year 2038 problem will be
solved much before that.

 The PC, whilst seeming ubiquitous, is still unused by 5.6
bn of the Earth's population. How do you see the other
5.6bn progressing - will we all have a Dell or is there
another way?

The majority of these people are just too poor to afford a
computer, and, if asked, I doubt many of them will bring up
computers as the top one luxury that they would like to have.

I expect that computing devices will further specialize, so that
the tasks people solve with the computer most of the time will
be solved with special devices in the future: games,
interactive communication, messaging, online shopping, etc. I
don't think that the current offerings of specialized devices are
suitable (except for the game consoles), so the PC will be with
us for quite some years - but humanity may grow faster than
the PC market.

 Martin von Loewis was kind enough to allow himself to be
interviewed by Paul Brian. Thanks.

Marc-Andre Lemburg Interview

Marc-Andre Lemburg is well-known as a Python contributor
and the author of the widely used mx package.

 The last time I hand-wrote a real letter was ...

That must have been sometime in 1993 while I was studying
in France. Not everybody had a email back then and some
friends didn't like electronic mail. That has changed since
then. I am more into writing email, IRC and related messenger
technology these days. Unfortunately, that still doesn't keep
me from doing tons of business related paperwork.

 Its still a shock when ...

... I realize that I've found a bug in a software release I made
minutes ago.

 I can still remember ...

... my first computer program: a short BASIC program
implementing a simple clock back in the summer of 1980.

 I first realised I was in the right career when ...

Now that's a good question. When I decided to go to
university, I had the choice of becoming an artist, study
computer science, physics or math. I eventually ended up
starting out with physics and after feeling uncomfortable with
their usage of approximations in theoretical mechanics
switching over to math. Since then I have been programming
a lot and loved it so much that I started a company. Still, I
sometimes feel that I would have probably been better off
working as an artist rather than trying to run a business.

Who knows, perhaps in a few decades ahead I'll switch over
(once again).

 People can waste their lives ...

... by not stopping every now and then to think about how
great life really is.

 My worst sporting moment at school was ...

[Not sure what to answer here: I'm not very much into sports,
except Modern Dance, so there probably was none.]

 The most beautiful thing I saw today was ...

... the crystal clear blue morning sky.

 Plants in my house survive for

Just moved into a new apartment: lucky for the plants -- we
haven't bought any yet.

 I couldn't live without ...

... my partner. She has given me more enjoyable moments in
life than anyone else in this world.

I got into trouble at school ...

I didn't get into any real trouble, but I often lost interest in the
boring things the teachers were trying to teach us. Whether
that's to blame on the teachers or on the German school
system is a different topic.

 You are well known for the mx packages (including
mxODBC). How did you make the (brave) decision to
make a living from your own software?

eGenix is not making a living from mxODBC and that was
never intended. We are mainly focused on consulting and
doing customer projects which involve the complete set of mx
tools, a few of which are not available to the general public.

Selling mxODBC to commercial Python users was more an
experiment to see how well it got accepted. At the time,
mxODBC was the only Python extension which you had to
buy (at least as far as I remember). It turns out that there is
indeed a small but growing market for selling Python software
components.

 FORTRAN is often hailed as the first high level computer
language, and is 45 years old. Would you still want to be
involved in computer languages when Python reaches
that watermark? And, given how far we have come since
1957, do you have any idea what languages will look like
in 2036?

I probably won't be involved in Python language development
anymore. I am more interested in designing complex software
systems than actually writing the code for it -- even though
writing Python is much more fun than coding C, Pascal,
Assembler or BASIC as I did in the past.

That said, I am convinced that Python will have a long stay in
the computer business and, just as Perl, will reserve itself a
place in history.

What I'm still a little worried about is that the lack of business
interest in the language will cause Python to remain outside
the scope of project managers. I wish that a company of an
IBM or Sun scale would invest into the language and push its
marketing.

The computer industry could save a lot of dollars by turning
away from system languages for project based development
and moving towards rapid application design paradigms
involving modern very high level languages such as Python
and Extreme Programming techniques. Of course, consulting
companies know this. The problem is that their customers
usually don't. As a result the consulting firms spend more time
by deploying on system languages and thereby making more
profit.

I believe that this is mostly due to the different structure of
mind set within the management level of large companies.
The saying "nobody ever got fired for buying IBM" still holds
true very much today and you can port that attitude to the
software development process as well. Managers know that
they are on the safe side by deploying on Java and C++. If
something goes wrong it's easy to find consultants who can fix
the problems. This doesn't (currently) hold for languages like
Python.

Without support backup from large companies, I think the only
way to get Python into the minds of managers is by building
on success. The Siena Architecture was such a success story
for us and I'm sure others in the Python field have had similar
experiences. However, it takes a lot of convincing and open
minded managers to get a process like this going.

The potential I see for Python is in very diverse companies.
Mid-sized companies tend to go by one strategy. Large
companies often display a more diverse IT infra-structure.
Small companies care for the money they have to spend. My
feeling is that the latter two are most likely to become potential
Python users.

 Given the choice between life with Python and your
family, and life as a Pina Colada tester on a beach in the
Carribean with your family, which would it be?

If someone would give me enough money, I wouldn't mind
moving to a nice warm island in the Pacific, equipped with a
satellite uplink to keep contact. In reality, however, I'd
probably miss the dark small cinemas, art exhibitions, bars
and clubs that metropolitan cities have to offer. It's still a nice

thought, though :-)

 The PC, whilst seeming ubiquitous, is still unused by 5.6
bn of the Earth's population. How do you see the other
5.6bn progressing - will we all have a Dell or is there
another way?

I don't think that the current "PC" kind of computer is going to
last. The future will give us smaller, less noisy machines with
smarter input and output facilities. Those machines will
eventually replace Hifi and TV, and could indeed spread to a
much larger share of the world population than the current
"personal heating systems"; mobile phones and PDAs will
lead the way.

Apart from that, I believe that the world has more urgent
problems to solve. What we are currently seeing in form of
globalized terrorism is different from the uprise of the "third
world" people have seen coming for years, but the originating
cause is nethertheless the same. The "first world" is currently
busy industrializing knowledge. Luckily, the Internet has given
the other two worlds a chance to catch up and I see a
perspective here which hopefully makes a difference.

Marc-Andre Lemburg was kind enough to allow himself to be
interviewed by Paul Brian. Thanks.

Eric S. Raymond Interview

 Eric S. Raymond is the author of "The Cathedral and the
Bazaar" and a well-known writer and speaker on open source
issues.

 You are often seen as a spokesperson for open source
software, and your support for Python has brought new
"converts". Do you ever feel like public property ?

No. It can get pretty damn stressful nevertheless.

 To help on the stress front, if you could ban anyone from
asking you one particular question about open source
ever again, what would it be?

"What's the future of open source?" Cripes. If I knew how to
do prophecy I'd found a religion or something. Er, no, wait,
I've already done that. Twice.

 (that was the next question - ed.). OK, Given the choice
between life with Python (and your family), and life as a
Pina Colada tester on a beach in the Carribean (with your
family), which would it be?

Python. Beaches are cool but I don't drink.

 OK - some rapid fire questions if you don't mind.

 "The last time I hand-wrote a real letter was ..."

Oh, around...1975, I think.

 "Its still a shock when ..."

Hardware just keeps getting relentlessly cheaper and more
capable.

 "I can still remember ..."

The musty yellow paper rolls on ASR-33 teletypes -- my first
interactive computing, back around 1972.

 "My partner and I dislike ..."

Stupidity. Television. Easy-listening music. Bland food.
Victimology.

 Sorry - what's victimology?

The manufacturing of grievances, especially through politics,
and *especially* through identity politics.

 Thank you.

 OK - "I first realised I was in the right career when ..."

I found myself marvelling that I was getting paid for what I was
doing.

 "Artists should always ..."

remember that if they're not reaching an audience, they're just
masturbating.

 "The most beautiful thing I saw today was ..."

My wife Catherine.

 Bonus points there I think. :-)

 "Plants in my house survive for"

Pretty much forever. I have a green thumb. Yes, I know that's
odd in a hacker.

 "I couldn't live without ..."

Um. Food? Water? Oxygen?

 Silly question. "My worst sporting moment at school was
..."

Every single one of them.

 "My first home computer was ..."

An Osborne-1

 Have a look here
(http://www.imarshall.karoo.net/osbourne_1.htm)

 miss that computer because ..."

Pull the other one, I don't miss it for a nanosecond.

 The PC, unlike the Osbourne-1, might seem ubiquitous,
but is still unused by 5.6 bn of the Earth's population.
How do you see the other 5.6bn progressing - will we all
have a Dell or is there another way?

There's another way, yes, but it's not here yet. Handhelds with
a 24/7 wireless internet link. Do most people buy computers to
run Mathmatica? Nope. They use them for email, for the Web,
for word processing. Most people have more need for
communication than computation.

 Very quotable:-)

 So, what is most important to you outside the world of
software ?

Freedom. That I have it, and that others have it too.

 And with that thought we shall leave it. Thank you Mr
Raymond.

Thank you.

 Eric S. Raymond was kind enough to allow himself to be
interviewed by Paul Brian. Cheers.

Alex Martelli Interview

 Alex Martelli is a long time python enthusiast and contributor.
He recently edited the Python Cookbook from O'Reilly, has
another book coming out soon and shall be speaking at the
April conference.

 The last time I hand-wrote a real letter was ...

in the summer of 1976. I remember the occasion well -- I was
on vacation, without access to my beloved electric typewriter
(which my dad had given me years before, as a gift for by 7th
birthday), yet I did have to write at once, couldn't wait to get
back home (matters of the heart...).

 Its still a shock when ...

I stop to consider how much RAM is in the PDA in my pocket
-- more than in the whole mainframe I learned to program on.

 I can still remember ...

 the thrill of running my very first program -- a pack of
punched cards in Fortran -- the card reader slurping it in,
the line printer emitting the listing and results, all without
a hitch. Three of us students had been reviewing that
code for days... Then, of course, after that one first
program, hubris set in, and rarely has a substantial
program of mine compiled and run without a hitch first go
-- which is why I still remember that one magic first time,
of course!

 I first realised I was in the right career when ...

...the floppy drive I was trying to assemble for my "jupiter Ace"
(a forth-based British PC similar to Sinclair's ZX
basic-centered ones) finally crumbled in my hands, obviously
irretrievable. That's when I _knew_ I had made a lucky choice
in shifting careers to make a living doing software rather than
hardware...!

 There's terrific snobbery ...

...in boasting about having HAD to bootstrap a mini via
console switches, cut and splice paper tape back together to
"edit" a program, solder one's own chips to the motherboard --
about having lived through the times when we did have to do
that. In fact it all mostly depends on having about the right
age, i.e., just on getting old!

 Artists should always ...

...remember they're just the same breed as technicians. Ars
and Techne are one another's translations in Latin and Greek
respectively -- there are different arts (also known as
technologies), but only one Ars, Art, Techne.

 People can waste their lives ...

...in many different ways, most of them deadly boring and
unplesant. My tip: if you choose to waste your life, pick an
interesting and pleasant way to do so.

 My worst sporting moment at school was ...

...just about every one of them. I loved study, couldn't stand
sports.

 Plants in my house survive for ...

...as long as I don't try to help out with them -- i like plants, but
I think it's not mutual -- I have to admire them from a distance,
or else...

 I couldn't live without ...

...music -- Bach, Offenbach, Mozart, Nymann, Monteverdi,
Sullivan...

 I got into trouble at school ...

...for helping friends out too much -- teachers didn't take well
to my whispering suggestions during interrogations or passing
sheets of paper with the answers on written quizzes. I realize
NOW I wasn't actually helping them, but it sure felt that way at
the time!

 My first home computer was ...

...a hand-assembled ZX80.

 (Wha hey ! - ed.) - ...I miss that computer because ...

...well, on second thoughts -- I don't miss it! the mainframe
and minis we had at the university, now THOSE were
something. But I didn't own a home computer worth missing
until I got a (pre-assembled) Acorn "Atom"... but that wasn't
the first!-)

 You are going to be speaking at the Python UK
Conference in April (shameless plug to be inserted here).
Can you please tell us why you choose to speak there?

The fact that it's held together with ACCU's conference was a
big attraction to me -- maybe we can lure some great C/C++
programmers to give Python a chance...!

 Given the choice between life with Python and your
family, and life as a Pina Colada tester on a beach in the
Carribean with your family, which would it be?

Python! Too easy -- I don't LIKE Pina Colada.

 Here's hoping. If you ever lost your (infectious)
enthusiasm for Python, what would be the last aspect you
would lose?

The deep respect for Python's design -- perfect balance of
simplicity and power, of purity and pragmatism, of so many
things.

 Python is sometimes described as a near perfect balance
between Object orientated, procedural and functional
programming. Which of these three is most underused
and does that matter?

Functional programming is vastly underused, both in Python
and out of it. In Python, because the balance isn't quite
perfect -- procedural and object capabilities are superb,
functional is somewhat less so. In general, because it's hard
to learn to think functionally (well, for all but math majors,
perhaps) AND it's harder to get good performance with
programs that don't modify data (i.e., functional programs). It
matters, a bit, because the potential of functional
programming is quite substantial for tasks that are amenable
to it.

 And finally, what is the most important lesson people
can learn from/about Python?

Great design is not about making no compromises, it's about
making just the RIGHT compromises. That's why it's never
easy.

 Alex, Thank you.

Thank you.

 Alex Martelli was kind enough to allow himself to be
interviewed by Paul Brian. Thanks.

Sponsors:

Microsoft is proud to participate as a
sponsor for the Association of C and C++ Users Spring Conference 2003! This year marks the 10th anniversary of the Visual C++
developer-tool product, and it is fitting that an all new release is currently pending. Visual C++ .NET 2003 will have hundreds of
updates including many that raise the ISO C++ conformance rating of the compiler to over 98%. We challenge every ACCU attendee
to try the C++ techniques they learn at the conference with Visual C++ .NET 2003!

Perforce is the Fast SCM system that runs on over 50
platforms. Its focus on performance, reliability and usability particularly appeals to developers that find excessive process an obstacle
to productivity. Perforce is used by organisations with dispersed development teams working to get quality new products to market on
schedule.

 Blackwell's first bookshop opened its doors at 50 Broad Street, Oxford in 1879. We now have over
60 bookshops in 25 university cities and towns throughout the UK, supporting the information needs of academics, students,
professionals, libraries and businesses. We aim to hold the most comprehensive range of books in your speciality with a choice of
ways to access our service: a combination of retail, mail order and online bookselling. Full details of Blackwell's shops, services and
details of more than 1.5 million books, both in and out of print, can be found at www.blackwell.co.uk

Exhibitors:

Field-proven C++, XML and GUI components from Rogue Wave® give development teams a head start on
building applications that solve business problems, increasing productivity and the ability to deliver products on

time. Rogue Wave help extend existing developments in C++ with their new web integration products and boost performance of
applications with ATS, their drop-in memory allocator.

QBS Software has been supporting and selling software for over 14 years and is a leading reseller of programming tools
in Europe. We work with over 250 publishers and sell nearly 800 software tools to the developer, the corporate customer

and to over 200 resellers throughout the world. Tools sold include those that support .NET, C++, Java, VB and Delphi and range from
code, comms, interface, system, reporting and data controls, to installation, help creation, web development and desktop publishing
software. QBS has always maintained its independence and is well-respected in the industry for product knowledge, fast and friendly
service and fair pricing.

 The Professional Contractors Group is the trade association that represents the interests of freelancers and is a
not-for-profit organisation run by freelancers for freelancers.
The PCG has evolved to become the freelancers champion, campaigning on issues that matter to the freelance community,
irrespective of industry focus. It is committed to promoting members commercially and supporting their development.
Please see the link to our homepage:www.pcg.org.uk/

	ACCU Spring Conference 2003
	Welcome Letter
	Talks and Speakers Details
	Keynote
	Python UK Conference
	Track 1
	Track 2
	Track 3
	Track 4
	Track 5

	Interviews
	Guido van Rossum Interview
	Martin von Loewis Interview
	Marc-Andre Lemburg Interview
	Eric S. Raymond Interview
	Alex Martelli Interview

	Sponsors

