	ReportLab Inc.

Lombard Business Park,

8 Lombard Road

London SW19 3TZ

Tel +44-976-355742

Fax +44-208-544-1311

www.reportlab.com
	
	[image: image7.jpg]

Diagra / PreS Interface

	Prepared By
	Andy Robinson

	Date
	January 2005

	Draft No.
	2

	RL Project ID
	Rl_pres

Table of Contents

21.
Why use Diagra with PReS

32.
How the Interface Works

53.
Installation and Setup

74.
Tutorial Examples

165.
Tips

176.
Possibilities for use

187.
Design considerations for interface

208.
The wrapper functions

Executive Summary

This is a specification and user guide for a high level interface between ReportLab’s Diagra product and the PreS reporting system from Printsoft.

Evaluators who merely wish to understand this will find it helpful to get a copy of the diagra user guide (available at http://www.reportlab.com/docs/diagradoc.pdf).

PreS developers wishing to try this out will need a distribution from ReportLab, which is available on request from enquiries@reportlab.com.

We would like to thank the Customer Documentation team at Fidelity Investments Ltd. (U.K.) for their cooperation and suggestions in developing this.

1. Why use Diagra with PReS

ReportLab has a product named Diagra for generating high-quality graphics. Users visually define ‘master’ charts and graphics, and can specify how they link to data sources. These can then be generated in various contexts:

· Batches of high-quality EPS files for inclusion in printing workflows

· Bitmap graphics for web use

· As graphics within PDF documents generated with reportLab’s PDF framework.

Diagra can both generate charts in real time, and generate batches off line (for example, at the end of each month).

PreS supports a number of different output formats; this document covers PreS for Postscript.

PreS has basic chart tools available which can create attractive bitmap charts with 3d effects “inline” within a document. However, there are some limitations:

· There is very little control over the chart appearance; size, style and colours are largely automatic

· One cannot implement custom charts and business rules, or harmonize graphics with those used elsewhere in the business.

· The charts are bitmaps. This means that they will be grainy in print and/or increase file sizes substantially.

The principal advantages of Diagra are that

· You can develop a gallery of highly specialized, controlled charts which look exactly the way you want and match the enclosing documents – with control of fonts, inks and colours, and if needed with titles, legends and bars precisely aligned with things in the enclosing document.

· You can use the same charts across all channels – web, high volume print, high quality literature

· You can create ‘non-chart’ graphics such as complex tables, bar codes and data displays which would be prohibitively expensive to create in

· Charts can actively fetch data from external sources. If you want to add a fund/index comparison chart to a customer statement, the fund and index time series must come from somewhere. Getting this added to all the data streams and amending the PreS code might be very expensive. Note that some assistance may be needed from ReportLab to realize these in a specific installation – we cannot provide generic examples
Imagine a client in Investment Management or Banking which is using PreS for client statements. They might use this in two ways

· Charts can be created “on the fly” within a PreS script showing investment breakdowns, past performance and so on. In this case, they would be plotting numbers which are extracted by PreS from the data stream, and passed through the PreS/Diagra interface. The call will result in an EPS file being created on disk

· Where charts may be shared, they can be generated in batches outside of PreS. For example, if each investor has holdings in several funds, but there are only 100 funds in total and their holdings and performance are in a database, then one could create a “data aware chart”. This would be executed at month end, would connect to a database and create a directory of 100 different EPS charts with known filenames. This is “out of the box” Diagra functionality covered in the Diagra User Guide.

2. How the Interface Works

Concepts

Diagra, and all ReportLab’s other products, make heavy use of the Python scripting language. Python is a high-level, open source language which is free, easy to learn and offers very simple syntax – a kind of “cross platform BASIC”. It also has extensive libraries available for processing numbers. We have made a Python interpreter available to the PreS environment using the Userhook feature. It is possible to send strings of Python code through the ‘userhook’. Since you are passing through chunks of code in a general-purpose language, you could use this to do almost anything – control jobs, log into other machines, FTP output files around – but we will use it co create charts and graphics for PReS.

To create charts we would pass instructions through from PreS to do the following for each distinct document or customer record that needed a chart:

1. create a chart in memory based on a recipe you have already designed,

2. set its data properties and title to what is needed for the current document

3. save this to disk as an EPS file (or bitmap, if you prefer..)

4. Read in the EPS graphic into the print stream.

5. Delete the EPS file after reading, to avoid cluttering up the disk

Doing this ‘down to the metal’ requires the programmer to have detailed knowledge both of PreS and the Python language. The snippets of Python code will be short and very readable, but a lot of housekeeping is needed in PreS to accurately build up the strings and lists accurately.

To remove this need, we have produced a PreS library with functions which hide all of the details of the Python language. The PreS programmer will still need to learn the necessary properties of the charts in question, which is the subject of the rest of this tutorial.

Conventions in this document

PreS is very verbose and contains features generally not seen in modern computer languages. In particular, one cannot pass literal strings to functions. To keep this document readable we have shown code snippets as if one could. In other words, when we use a code snippet like this…

DiagraSetTextProperty(“d”, “chart.title.text”, “Growth in 2004”)

…it will actually be necessary for the PreS programmer to initialise and create several variables like this, at the right points in their program:

ALPHA drawing L10 = “d”

ALPHA property L255

ALPHA chartTitle L255

property = “chart.title.text”

chartTitle = “Growth in 2004”

GOSUB DiagraSetTextProperty(drawing, property, chartTitle)

We believe we have made the PreS syntax as short as it can be while still keeping the interface general.

Python code snippets and Diagra chart properties are displayed in green like this:

print “hello world”

barchart.data = [[120,133,150],[97,103,115]]

legend.categoryNames = [‘Equity’,’Bonds’,’Cash’]

Basic sequence of events

When adding charts to PreS scripts, you will typically go through the following sequence of actions. We’ll step through this sequence with three examples later on.

1. Design the chart you want in the drawing editor. This will generally involve creating a blank drawing, adding at least one chart widget, possibly adding titles and subtitles, and possibly adding a legend. Play with the properties until the chart looks the way you want. Save it frequently!

2. Use the ‘File | export’ feature to export a single EPS chart (or bitmap, if that’s what you need). Try importing this into a PreS script as a static graphic. Check it prints properly, fits the way you want, and ensure it looks right in context. For example, you might want a ten-point bar chart to line up perfectly alongside a ten-row table. It’s best to get this right at design time.

3. Determine the properties you will want to vary at “run time” – i.e. what will differ from chart to chart. This almost always includes the numeric data; it may also include title and subtitle text, category names and series names. (However, bear in mind that you can vary anything at all – there’s no reason why positions, colours or even visibility of elements can’t vary from one to the next). Once you have done this, carefully note down the full names of the properties you wish to change and the way the data is presented. (You will see examples of this below)

If not done already, save the chart module where PreS can access it (e.g., you probably have a folder for elements shared between scripts, and can create a charts folder under it. We will assume c:\PreS\reuse\charts.
4. Add lines to your PreS script to pass through the data and redraw and save the chart on each loop. Test thoroughly!

3. Installation and Setup

ReportLab makes a number of deployments, and the one to use will be discussed with you by your representative.

This section describes the standalone rl_pres installer. These files contain everything needed for Diagra to run (including a standalone Python installer). The installers will be located in an agreed place on our web site and are named as follows (except that the version number increases):

RL_PReSSetup-0.97.exe

At the time of writing (Jan 2005), these have been tested with PreS 200 and 3.16

Anyone installing for the first time should run through the steps below, starting the editor and running the script, before starting to edit and customize.

What the installer does
When you install RL_PRES it installs a number of files into the directory you specify; by default it suggests C:\Program Files\ReportLab\Rl_PRES-X.YY. These files include documentation (this manual), the complete runtime environment, and an examples directory.
It also places a copy of the Userhook DLL, rl_pres.dll, into the PReS\System directory.

It creates a registry key of its own so that the DLL can find and start up the installation.

If installing new versions, you should uninstall the old one first using Control Panel. If files are left behind after uninstalling (such as modified examples or PDC or pyc files), these can be safely deleted by hand.

Running the example

[image: image8.png]The distribution contains an example PRES script which generates ten copies each of three different charts.

This is designed to be run within the rl_pres/examples directory, wherever you installed it.

For various reasons, we need to specify absolute paths for images and the final spool file. This will put its output into C:\temp. If this directory does not exist, you may need to create it.

Compile example.pds, run example.pdc, and check that c:\temp\example.ps is created. Distill this to PDF or print it; you should expect to see pages like the one on the right.

If you have any difficulties with this, check the ‘prerequisites’ below and then contact ReportLab.

The rest of this manual will use code and charts within the example script.
Starting the Drawing Editor
The other thing you should do is to start up the Drawing Editor. After installation there should be a link on the Start Menu at

Start Menu -> Programs | RL_PReS-X.YY -> GUI Edit

Start this. After a few seconds, a GUI with a black screen should come up. It will say “making list of known objects”, and be busy for a while. Wait until it says “finished” and prints statistics. (Subsequent runs will be faster)
Do File | Open and select one of the examples (e.g. rl_pres/examples/example3_quickchart.py. You should see something like this:

[image: image1.png]
Preparing for production use

You will almost certainly wish to set up various directory layouts for your own use.
The installer will have already copied the rl_pres.dll to the PReS\System directory. Here’s what you need to do:
· Copy the file examples/rl_pres.pdi into wherever you put your shares library modules – for example, you might have a convention to use c:\pres\reuse\
· You will probably wish to set up an area for charts to be shared among scripts. To get you started you could copy charts to c:\pres\reuse\charts. Note that if you refer to charts which are not in the same directory as the compiled PReS script calling them,
· You will need a convention for where charts are written to disk before being imported; this must, obviously, be in a writeable directory.

4. Tutorial Examples

The first stage in a real project is to make a chart template using the Diagra drawing editor. The use of this is fully documented in the main Diagra manual (available in your distribution, or online at

www.reportlab.com/docs/diagradoc.pdf
). We will not repeat material in that manual here, although the screen shots will hopefully give evaluators some idea of what to expect.

We will work through four examples in this section. The first will be ultra-simple – a pie chart no title or legends. We will go through this very slowly with explanations, presuming no knowledge of languages other than PReS

The second will be quite realistic – a drawing containing a bar chart, a title and a legend.

The third will use our Quickchart API, which gives less fine-grained control but lets you create charts with sensible automatic sizes.

The fourth expands on the use of legends, showing one being used by a pie chart.

The file examples/example.pds is used to illustrate everything in this chapter, and has running code you can copy and paste; the three chart scripts in the directory can be opened in the Drawing Editor.

Example one – a simple pie chart

This is covered in example1_pie.py; a running version of the PReS code in this example is available in ProcessPie subroutine in example.pds
This is the simplest useful example we could contrive. Imagine you need a pie chart showing the proportion of Equity, Bonds and Cash in a portfolio, and that only these three things will be present. Here’s a screen shot of the chart module, which is named example1_pie.py in the rl_pres/examples folder. You can open this in the Drawing Editor if you wish. Let’s go through the four steps:

Step 1 – Create the drawing

[image: image9.png]We will not generally repeat Diagra tutorial material later, but here’s a quick summary of what we did in the Drawing editor

· We created a new drawing based on the DataAwareDrawing class. This is important, as DataAwareDrawing allows some control of postscript output in batches, and opens the door to fetch data later. However, we won’t actually use the dat-aware capabilities in the first few examples.
· We added a Pie widget named, “pie”

· We set the pie data property to [3,2,1] (in order to have realistic sample data)

· We set the labels property of the slices property of the pie object to the array [‘Equity’,’Bonds’,’Cash’] (this involves ‘drilling down’ a couple of steps)

· We set the position and size of the pie to fit within our 400x200 drawing.

· We made the label fonts a bit bigger and moved them out from their default position

In case you want to reproduce this, we will summarize the property assignments we made as follows:

pie.x = 50

pie.y = 25

pie.width = 150

pie.height = 150

pie.data = [3,2,1]

pie.labels = ['Equity','Bonds','Cash']

pie.slices.fontName = 'Helvetica'

pie.slices.fontSize = 14

pie.slices.labelRadius = 1.3

The lines above are, in fact, Python code and what a Python developer would write to create such a chart. One can open up the source of the drawing file in an editor and the information above would be visible. It is useful to keep notes in this format as the lines tell us exactly what we need to do in PreS later.

Step 2 – testing in PreS

This needs no detailed explanation. At this point you might do ‘File | Export’ and save an EPS, bring it into PreS as a static graphic, run the PreS script and check the output looks good in context. You might iterate on this a few more times. It’s much quicker to get the chart designed right before commencing PreS coding.

Step 3 – note the runtime properties needed

In this case, which is just a teaching example, we will only pass through one property at ‘run time’ i.e. when PreS is running, and we are making different charts: the data array for the chart. More complex charts may pass through three or four things.

You need to note the fully qualified name of chart property you want. This can be done EITHER by

(a) quickly glancing at the source of the drawing module in a text editor, finding the word ‘self’, and dropping it

(b) looking at the property names in the editor.

The figure below zooms in on the bottom portion of the editor. We’ve clicked ‘data’, the property we are interested in. This is an attribute of the pie object on the Drawing – you would have double-clicked ‘pie’ to drill down to here already – and a reminder of this is in the red line above the Attributes grid, which tells you ‘where you are’ in the hierarchy. Because it says “self.pie Attrs”, we know we are in the pie object and looking at its attributes. If it just said “self Attrs”, we would be at the top level. If we were editing properties of the pie slices, it would say “self.pie.slices Attrs”.

[image: image2.png]
From either of these methods, we can infer that the property’s fully qualified name is simply pie.data, and we can also see that its type is a one-dimensional list of numbers such as [1,2,3].

Note: whenever you see numbers, floating point ones are allowed; you could also put [1.2, 2.3333,3.0]. For some charts, negative values are allowed; and nulls can be indicate dby putting the magic value None into the list.

This step will become almost instant and intuitive after the first couple of charts.

The key point is that we do NOT separately document all the properties available to PReS, because ALL properties are available to PreS. You should explore the chart library visually and determine what you need.

Step 4 – create PreS code

We now need write the PreS code.

Let’s assume that we are generating numerous customer records from a data stream; there will be a page with a chart for each customer. Somewhere in the data stream there will be fields for the Equity, Bonds and Cash holdings. This is too simplistic, but we will look at variable length arrays in later examples.

You need to reference the wrapper module rl_pres.pdi
At the beginning of the PreS script we need to set some things up which will be executed once. The first step is to initialize the Diagra / PreS connection code.

GOSUB DiagraInitialise()

Next, we MAY need to make the chart directory available to the Diagra engine. If the charts are defined in the same directory as the script (or running PDC), this is not necessary. If you kept charts all in ine place, you would do this:

ALPHA chartdir L255 = “\PreS\reuse\charts”

GOSUB DiagraSetPath(chartDir)

We will then need to create a Drawing object in Diagra’s memory using the DiagraCreateDrawing function. It is OK either to create one drawing and reuse it for each customer, or to make a new one for each customer inside the loop.

At this point, you need to understand about variable names. You are basically causing commands to be executed in another language (Python), which has variables and objects. The drawing will have a name by which later functions refer to it. If your script has several charts, give them different names! The names can be as long as you want e.g. “myDrawing” or “assetClassPie”.

We will just call it “d”. We tell Diagra to create this, and pass in the module name in which it lives (minus the .py extension) and the name of the class we initially chose in the Drawing Editor (“PieDrawing”):

ALPHA drawingName L20 = “d”

ALPHA moduleName L20 = “example1_pie”

ALPHA className L20 = “Piedrawing”

GOSUB DiagraCreateDrawing(drawingName, moduleName, className)

IMPORTANT

For the rest of this tutorial, we will use a shorthand notation for all of this, since PreS programmers will already know about the declarations; we will simply write

 DiagraCreateDrawing(“d”, “example1_pie”, “PieDrawing”)

We will assume the reader knows enough PReS to construct the declarations. The example script contains fully expanded code you can paste.
We now have a Drawing object in Diagra’s memory, known to Diagra (actually, the Python interpreter) by the name “d”
The property pie.data is a list. It will initially have the sample values [1,2,3]. If we were writing python code to set the data, we would write a one-liner…

pie.data = [75,20,5]

..or whatever our values were

This has to be broken down into several PreS function calls. First, we create a temporary list variable with any name you like e.g.:

DiagraCreateList(“mylist”)

Then, we would loop through the customer data and collect the facts we needed. Imagine that the values are 75, 20 and 5. These calls would be made

DiagraAppendNumberToList(“mylist”, 75)

DiagraAppendNumberToList(“mylist”, 20)

DiagraAppendNumberToList(“mylist”, 5)

In real life, you will used named variables for the drawing, the property name and the values, and the latter will be drawn from the data stream.

Having built up our list of three numbers, we set the pie.data property to be equal to this.

DiagraSetObjectProperty(“d”, “chart.data”, “mylist”)

Now the drawing has its data. We can save the chart as an EPS file on the disk:

DiagraSaveDrawingAsEps(“d”, “c:\\temp\\myfile.eps”)

The file names to use are an important issue discussed later, but it is OK to use a static file name in learning.

You can now load in the graphic into the print stream, and clean up by deleting the file afterwards. Here is some realistic PreS code which does this.

;Position EPS graphic within document

SETXY
1.8, 19

;load in the file

LOADGRAPHIC
filename

;delete the EPS file

DELETE filename

Note that the LOADGRAPHIC filename requires ABSOLUTE paths, not just a filename.

The code above would run in a loop making charts for each customer.

Finally, at the end of your program you would make sure you had deleted any charts, if not already done so. There is no need to execute any ‘shut down’ commands, as each PreS job is a totally separate process.

Example Two – bar chart with title and legend

This is covered in example2_bar.py; a running version of the PReS code in this example is available in ProcessBar subroutine in example.pds
For the next example, we will go much quicker, just showing the properties needed in shorthand form. This is a more realistic example. We have taken a blank Drawing, and added three objects: a String called ‘title’, a vertical bar chart called ‘chart’, and a legend called ‘legend’. Here’s a screen shot.

[image: image3.png]
This is the kind of thing which we expect you would do often. You can precisely tune the appearance of everything about the chart, title and legend.

Step 1- Create the drawing

This file can be inspected by opening rl_pres/examples/example2_bar.py in the examples directory. There are two assignments which is non-obvious and which we will mention here; both of these are documented thoroughly under ‘Legends’ in Chapter 4 of the Diagra manual:

legend.colorNamePairs = Auto(chart=self.chart)

self.chart.bars[0].name = 'fund'

self.chart.bars[1].name = 'index'

First, we told the legend to pull its data (colours and series) from the ‘chart’ object instead of from the old, explicit list of color-name pairs. This is a recent innovation introduced in Jan 2005.

Secondly, we added two hidden fields to the chart’s bars collection to tell it the name of the two series. The chart doesn’t display these but the legend does; otherwise you will get ‘Series 0’ and ‘Series 1’.

Step 2- Test in PReS

We haven’t done this but at this stage you would synchronize the fonts and colours with the enclosing document, and perhaps tune sizes to line up with other objects on the page.

Step 3 – note runtime properties

This time, let’s imagine that the following things may vary depending on the data:

title: e.g. “Annual Return of Japan Growth Fund”

data: the two series of numbers

category names: the five labels ‘1999’-‘2003’ might also come from the data stream

The properties used to set these can be found in Drawing Editor, or examples seen in the source file. These are:

title.text = '<fund> Annual Growth'

chart.categoryAxis.categoryNames = ['1999','2000','2001','2002','2003']

chart.data = [(100, 110, 120, 130, 124), (100, 89, 97, 102, 112)]

Step 4 – write PReS code

DiagraInitialise()

DiagraSetPath(chartDir)

DiagraCreateDrawing(“d”, “example2_bar”, “BarDrawing”)

If we were mixing our bar chart with other charts in the same script, it would make sense to pick a name other than “d”!

Now we set the title. This is a string (text) variable so we set it like this:

DiagraSetTextProperty(“d”, “title.text”,”my title goes here”)

Now for the category names. Let’s imagine these are coming from a number of successive rows in the data stream each of which specify a year, a fund value and an index value. the years are to be used as categories, not numbers – it could just as easily be “North”, “East”, “South” and “West” – so we build up a temporary list of text strings. We then set the chart's categorynames property to equal this:

DiagraCreateList("catList")

DiagraAppendTextToList(“catList”, “1999”)

DiagraAppendTextToList(“catList”, “2000”)

DiagraAppendTextToList(“catList”, “2001”)

DiagraSetObjectProperty(“d”,

“chart.categoryAxis.categoryNames”,

“catList”)

Now for the data. This is a little trickier, as it is a two dimensional array. We will instruct Diagra to create two new list variables for us in memory called ‘fund’ and ‘index’, populate them, then finally add them to the chart data.

Thus, if I wanted to create a bar chart with two series and data like this:

	fund
	107
	113
	121
	129

	index
	102
	120
	123
	131

…then I could execute the following commands.

DiagraCreateList(“fund”)

DiagraCreateList(“index”)

DiagraAppendNumberToList(“fund”, 107)

DiagraAppendNumberToList(“index”, 102)

DiagraAppendNumberToList(“fund”, 113)

DiagraAppendNumberToList(“index”, 120)

DiagraAppendNumberToList(“fund”, 121)

DiagraAppendNumberToList(“index”, 123)

DiagraAppendNumberToList(“fund”, 129)

DiagraAppendNumberToList(“index”, 131)

#now clear the chart’s data array and append these two lists

DiagraCreateList(“myData”)

DiagraAppendObjectToList(“myData”, “fund”)

DiagraAppendObjectToList(“myData”, “index”)

DiagraSetObjectProperty(“d”, “chart.data”, “catList”)

Note that it does not matter in which order we gather and execute these functions. In reality this would depend on the way the data arrived in the data stream and the organization of your script. It’s up to you whether to collect categories, fund data and index data and “in parallel” or to make a pass over the data for each one.

At this point, we would finish with the same lines as before to save, load in and delete the chart:

;Render the chart and save as EPS with the constructed filename

GOSUB DiagraSaveDrawingAsEps(drawingName, filename)

;Position EPS graphic within document

SETXY
1.8, 19

;load in the file

LOADGRAPHIC
filename

;delete the EPS file

DELETE filename

Example Three – Quickchart

This is covered in example3_quickchart.py; a running version of the PReS code in this example is available in ProcessQuickChart subroutine in example.pds
The Quickchart object is an alternative to manually creating every element of a drawing. One of Diagra’s main strengths is that you can precisely position everything the way you want. The corresponding disadvantage is that you have to – it doesn’t automatically size anything for you. To help in these situations, we create a ‘smart widget’ which can be added to a drawing, named QuickChart. A quickchart object has a ‘type’ field which can be set to all of the common chart and subchart types you can see in Excel’s chart wizard, and a simplified set of properties. It works out the size and position of title and legend for you.

So, it’s ideal for when you just want to say “give me a 300x200 vertical 3d bar chart with this title and these data points”, want a reasonably presentable chart, and are not concerned with exact fonts and positions. In addition, the properties are always the same.

To learn about QuickChart, either add one to a drawing and play with the type property, or go to the web based test harness on

http://server.reportlab.com/cgi-bin/webcharts.cgi
This screen shot shows a QuickChart in the drawing editor. Right-clicking on the ‘chartType’ attribute has brought up a menu of all the available chart types.

[image: image4.png]
The key difference between a QuickChart (“qc”)and the previous example is that the properties are always the same, whatever the chart type, and are not “nested” inside child objects like “drawing.chart.categoryAxis.categoryNames”. The properties you are likely to set will always be called (if your drawing had an object named “qc” on it) this:

qc.titleText

qc.data

qc.categoryNames

qc.seriesNames

Note that the data property is ALWAYS a two-dimensional array. This is similar to Excel. For bar or line charts, the sequences of calls to populate the array will be like example 2.

If you just want a pie in a quickchart, you will need one temporary list variable and will need to build up a nested array like this:

qc.data = [[1,2,3,4]]

Here’s a code snippet to do it:
DiagraCreateList(“inner”)

DiagraAppendNumberToList(“inner”, 1)

DiagraAppendNumberToList(“inner”, 2)

DiagraAppendNumberToList(“inner”, 3)

DiagraAppendNumberToList(“inner”, 4.5)

#nest one inside the other…

DiagraCreateList(“outer”)

DiagraAppendObjectToList(“outer”, “inner”)

DiagraSetObjectProperty(“d”, “chart.data”, “outer”)

Example Four – pie chart with title and legend

This is another realistic example which illustrates the use of automatic legends. Assume the pie is a breakdown of sorts (e.g. fund broken into asset classes), and the number of components is variable. This is covered in example4_pielegend.py; a running version of the PReS code in this example is available in ProcessPieLegend subroutine in example.pds
Step 1 – Create the drawing

We’ll illustrate this in two steps. First, we create a drawing with a Pie object named ‘pie’, a title object named ‘title’, and a Legend object named – you guessed it - ‘legend’. At first the objects have no connections to one another. We have set a few positions and this results in a chart like this.

[image: image5.png]
The property settings made to date can be seen easily by inspecting the source code of example4_pielegend.py. You should note that at this stage,

· we have assigned a list of strings to pie.labels., which resulted in labels appearing around the outside of the pie.

· we have created a legend, which at present has no connection whatsoever with the pie itself.

As has been noted before, legends are “magic” and can pull information from the chart. They know the difference between Pie charts (which have just one series), and other charts which are more complex, and will pull out the labels we have already defrined. We will do this in a moment.
The grid of blocks in the legend will vary in size depending on the number of slice. We’d like a tallcolumn in this case, so we set the columnMaximum property to, say, 10. This means that up to ten swatches can appear in the first column before it starts a second column.

Finally, we want our labels in the legend only, not the edge of the pie, so we make the ones on the pie itself invisible. There are several ways to do this and a simple one is to set the fontColor to None, to prevent them being drawn.

These assignments finish things off:

legend.colorNamePairs = Auto(chart=self.pie)
legend.columnMaximum = 10

pie.slices.fontColor = None

This will create a pie like this:
[image: image6.png]
The legend will currently ‘grow up from the bottom’ as the number of slices varies, as its anchor-point is its ‘southwest’ corner. You could equally make it grow down from the top by setting the anchor to ‘nw’ or ‘ne’. In addition just about everything about the legend’s appearance can be adjusted.

For production use you would also define your own list of colours which is at least as long as the expected data points.
Step 2 – test in PReS

No comment needed.
Step 3 – note the runtime properties

ALL of the above is done in the Drawing Editor. At runtime, all we have to do is pass through the list of labels and the list of numeric values to go with them; the legend will pick them up. In our usual notation (and discovered from the drawing editor) these properties are:

pie.data = [1,2,3,4]

pie.labels = ['Equity','Bonds','Property','Cash']

Step 4 – PreS code
First we will assign the numbers. We create a temporary Diagra variable (called in this case “theNumbers”), build it up from our data, and assign it using DiagraSetObjectProperty:

DiagraCreateList("theNumbers")

DiagraAppendTextToList(“theNumbers”, 5)

DiagraAppendTextToList(“theNumbers”, 6)

DiagraAppendTextToList(“theNumbers”, 7)

DiagraAppendTextToList(“theNumbers”, 8)

DiagraSetObjectProperty(“d”, “pie.data”, “theNumbers”)

Now we do the same again with the labels.

DiagraCreateList("theLabels")

DiagraAppendTextToList(“theLabels”, “Equity”)

DiagraAppendTextToList(“theLabels”, “Bonds”)

DiagraAppendTextToList(“theLabels”, “Cash”)

DiagraAppendTextToList(“theLabels”, “Commodities”)

DiagraSetObjectProperty(“d”, “pie.labels”, “theLabels”)

We could equally well build them up simultaneously. You should assign the data first, not the labels; it is perfectly OK to have a chart with data and no labels, but not the other way.

Once this is done the legend will automatically pick up and display the labels.

Summary of key ideas

Consider the logical sequence of events to create a vertical bar chart showing the value of an investor’s holdings in different accounts. We presume that there will be a number of ‘account’ records in the data file, each with a field for the numeric amount and a field for the account name.

The followinf “pseudocode” shows the controlling logic and the PreS commands you would insert into the statements script; the real PreS code will be far more verbose but equivalent:

at the top of the script, do this just once

DiagraSetPath(“\Pres\reuse\charts”)

DiagraCreateDrawing(“d”, “holdings”, “HoldingChart”)

#an object called ‘d’ now exists in Diagra’s memory

#loop through all the customer records

for each customer:

 DiagraClearList(“d”, “chart.data”)

 for accountName, amount in holdings:

 DiagraAppendNumberToList(“d”, “chart.data”, amount)

 DiagraAppendTextToList(“d”,

 “chart.categoryAxis.categoryNames”,

 accountName)

 # now done with customer, save the chart

 DiagraSave(“d”, “myfile.eps”)

 # now do PreS code to slurp in the chart

This concludes the tutorial part of the document. The remaining sections provide in depth discussion of advanced topics and the full API reference

5. Tips

Error Handling and Debugging

PReS has very little runtime error checking. If one executes LOADGRAPHIC and there is no chart file present, the script continues.
Likewise, if any Diagra routine raises an error, PReS will unfortunately continue running. An error in your script (e.g. lengths of data array mismatches length of category names) will produce a dialog with the correct Python traceback, but will keep doing it for EVERY record in your data file! If this happens, one either waits for the end, or kills the process with Task Manager.

It therefore makes sense to do initial development with (a) the delete statements suppressed, so you can see the charts coming out, and (b) a very small data set.
File names for charts and housekeeping

The charts need to be written to disk. There are some subtle issues to address here. First of all, we don’t know about the timing issues and have had problems sometimes if we delete the chart immediately after doing LOADGRAPHIC – it doesn’t see the EPS file at all. These problems are intermittent, which is particularly confusing.
Secondly, it is possible you might have two instances of a script running concurrently and sharing the same filename for a chart. This might result in one customer seeing another customer’s chart, in the worst case!

For this reason we recommend implementing a unique chart naming convention in a subroutine. The name of the chart generated should combine the script name, a chart id, and some kind of process ID or timestamp or random number. At the end of the script, or later on in the main loop, you can delete file names which the script just generated.

When debugging, it is sometimes useful to comment out the lines which delete the charts, and verify that the right ones are being created with the right names. You can do this in example.pds and look in c:\temp.

Performance

Making charts is inherently much more time consuming than printing a few lines of text.
We modified our example script to contain 49 records, and run it on a Single-CPU entry level DELL, 2.2Ghz, 512Mb RAM. This ran in about 10 seconds, compared to about one second with the chart routines commented out. This suggests a very rough performance of 15 charts per second (150 charts total).
The best way to tune performance is to only generate charts inline when you really need to. In many cases, there will be a much smaller set of possible charts than there are customers (e.g. 100,000 customers each have holdings in just 50 funds; stock charts could be generated by ticker symbol and only built if needed).

It is important to set preview = 0 at design time in the Drawing Editor, as otherwise Diagra will generate a bitmap preview in each file; this could double the generation time and is not useful in a PReS context.

We would welcome realistic feedback on much larger data sets!
6. Possibilities for use
The expected use of this tool is to take largely pre-designed charts, set a handful of properties, and save them. The considerable overhead of “wrapping up” every data point like this will not matter if creating small charts.

Batch charts

There may be other kinds of charts which are different every month, but do not vary from customer to customer. For this, use the ‘Data aware drawings’ documented in the main Diagra manual. You may find you need a different ReportLab distribution for this and should contact us for details.

Imagine you had a range of 50 funds offered to customers, and 100,000 customer statements. It makes a lot more sense to generate the 50 files once, then have all of the statement scripts just use LOADGRAPHIC to pick them up.

Combined charts

If charts are needed with many data points or large external data sets, it would be much smarter to put the brains into the chart object. For example, we could easily create a chart which queried a database to retrieve 20 years of price data and created a plot – or even which directly parsed a data stream.

DiagraCreateChart(“f”, “fundchart”, “FundChart”)

DiagraSetProperty(“f”, “fundCode”, “AM”) #Fidelity American Fund

DiagraSave(“myfile.eps”) #save triggers a database query and re-plot

Another possibility might be a ‘smart chart’ which directly called a MorningStar Xray data service.

This has not been done to date but ReportLab can assist with these as needed.

We expect to incorporate an example shortly in the distribution; this will use a local Access database as a data source.
Other possibilities

The Diagra/PReS binding is actually a general purpose technique for letting PreS invoke Python code. Python is a much more modern language with large numbers of freely available, robust libraries, which can do a great deal in a few lines of code. This binding can be used to round out PReS in numerous ways including
· Fetching data (from databases, XML files, custom file formats) and pulling into PReS in an efficient manner

· File processing – doing things with generated files, FTPing them to remote servers, fetching graphics, constructing TRF files on the fly, doing computations

· Network programming – communicating with numerous other systems

ReportLab are happy to assist with any possibilities or ideas in this area. Given a small amount of training, your PReS programmers should find they can start to do a great deal more within their scripts.
7. Design considerations for interface

PreS has an extension feature called the ‘User hook’ – a specification for a DLL so that third party vendors can expose new features to PreS.

ReportLab’s tools are written in a high-level language called Python. We have developed an ‘embedding’ interface which puts our entire framework and the Python interpreter inside a DLL. We added a ‘user hook’ compatible entry point.

This works well and is extremely general – it could be used to pass any information back and forth. It works by letting the programmer build up and pass through a string of Python code as a command. Commonly, about ten standard one-line ‘code snippets’ would be all the programmer needs to know to make charts.

It also gives PreS a way to call out to a very powerful scripting language and do literally anything. PreS scripts could call out and cause extra data streams to be generated, query databases, cause files to be created and put in place…the possibilities are limitless.

Use of this interface at a low level presumes knowledge both of Python and of PreS, and using it to create charts will need knowledge of ReportLab’s chart classes. It also requires a lot of housekeeping in building up the ‘command strings’ to pass data through.

In early use, it became clear that trying to build up a command string like this…

mychart.data = [100,110,120]

mychart.categoryNames = [‘north’,’south’,’east’]

was actually difficult – both in the mechanics of putting all the quotes and commas together, and in terms of where in the PreS program the facts were available.

We have therefore developed a higher-level wrapper in PreS which directly addresses how to set up charts.

It was decided that a higher-level interface was needed which directly addressed setting up charts. This design has emerged from discussions between Oliver Maxwell and Andy Robinson and an analysis of an existing PreS statements script.

It is important to understand that Diagra is a very general, flexible package. You can put several charts and legends on a drawing, add any number of decorations, and create things like risk thermometers which aren’t even charts. Different chart types have very different properties. We cannot provide a simple set of PreS functions to create a bar or pie chart with limited options, because

(a) it won’t actually help pass through real-world arrays of numbers easily due to limits inherent in the Pres language,

(b) it will need extending, recompiling and shipping again every time someone makes a slightly different chart or diagram

In June 2004 Andy Robinson and Oliver Maxwell reviewed a real Statement and Valuations script. This was extremely helpful and has suggested an approach which we believe will be usable by PreS programmers and will hide almost al ofl the complexity

The equivalent Python Code

If one wanted to create dynamic versions of these charts in a Python script, the code would be very simple. This is a realistic example. PreS programmers interested in should scan this to understand what is going on behind the scenes:

at the top of the script, do this once

import sys

sys.path.append(‘\\pres\\reuse\\charts’)

import fundcharts

fc = fundcharts.FundChart()

for customer in customers:

 fc.chart.data = []

 fc.chart.categoryNames = []

 fc.title.text = customer.name

 for (accountName, amount) in customer.holdings:

 fc.chart.data.append(amount)

 fc.chart.categoryNames.append(accountName)

 # now got all customer data, save the chart

 fc.save(“myfile.eps”)

Because it is tedious to manipulate strings in PRES, we have hidden most of these steps in equivalent Pres functions, but the logical steps are all there: put the chart module on the path, create a chart object, set some properties and then save it to disk. Pres will then load the EPS file into the document with a suitable graphics command.

8. The wrapper functions

This section explains all of the available wrapper functions.

The module rl_pres.pdi defines a number of functions to wrap up the process of constructing charts and setting their properties them through the interface – as well as general functions to just execute some code. These all begin with the prefix Diagra. These may be expanded or modified depending on usability feedback from early customers. These cover the tasks needed above: create a chart, set or append to its properties, save the chart.

Developers with some knowledge of non-PreS languages might wish to create their own wrapper functions to do other things.

Functions for Setup, save, cleanup

DiagraInitialise()

This must be called once at the start of a script. (Multiple calls will not cause a crash but may lose Diagra data)

DiagraSetPath(directoryName)

This adds a directory to the Python search path. You would call this once at the top of the script if the charts were not alongside the PDC. Example

ALPHA chartdir L255 = “\PreS\reuse\charts”

GOSUB DiagraSetPath(chartDir)

This is equivalent to the Python code

import sys

sys.path.append(r“\PreS\reuse\charts”)

DiagraCreateDrawing(drawingName, module, class)

Imports the chart defined in module and class (as created with the drawing editor) and assigns it to the given name for future commands.

Example:

DiagraCreateDrawing(“d”, “mymodule”, “MyClass”)

…will create a named drawing “d” which can be referred to by further Diagra commands. It is equivalent to

import mymodule

d = mymodule.MyClass()

DiagraSaveDrawingAsEps(drawingName, filename)

Saves the drawing to disk.
Functions for Setting non-list Chart Properties

DiagraSetTextProperty(drawingName, property, stringValue)

This sets a string property of the drawing or one of its subcomponents.

DiagraSetNumericProperty(drawingName, property, numericValue)

This sets a single numeric property

DiagraSetNone(drawingName, property)

This sets the python object to the special value None. This could be used to delete data, make visible objects disappear etc.

DiagraSetObjectProperty(drawingName, property, objectName)

This sets the value of property to the named object. Commonly used when properties are lists, and you need to assign a list to them which you have built up
Working with one- and two-dimensional lists
In Python, arrays can be nested to any number of levels. Many charts are most naturally represented with a 2d data array (think of Excel!), and there are even some with 3d data. We use some list manipulation functions to build up the lists.

The most likely case is that the programmer is looping over input records gathering one datum at a time. Rather than building fixed size arrays in PreS and looping over them again later, it is easier to build up the underlying python lists one datum at a time, then apply them all to the drawing in one go later.

DiagraCreateList(name)

DiagraAppendTextToList(listName, textValue)

DiagraAppendNumberToList(listName, numericValue)

DiagraAppendObjectToList(listName, objectName)

DiagraClearList(listName)

These functions all manipulate lists. The idea is that you can create a list, add stuff to it, and then add that list to another named list to make up a two-dimensional array. Then, you can set these lists onto drawing objects
Thus, if I wanted to create a bar chart with two series and data like this:

	100
	107
	113

	95
	102
	120

…then I could execute the following commands.

DiagraCreateList(“fund”)

DiagraCreateList(“index”)

DiagraAppendNumberToList(“fund”, 100)

DiagraAppendNumberToList(“index”, 95)

DiagraAppendNumberToList(“fund”, 107)

DiagraAppendNumberToList(“index”, 102)

DiagraAppendNumberToList(“fund”, 113)

DiagraAppendNumberToList(“index”, 120)

#now make a combined list

DiagraCreateList(“data”)

DiagraAppendObjectToList(“data”, “fund”)

DiagraAppendObjectToList(“data”, “index”)

now finally set the chart data to the variable we have created

DiagraSetObjectProperty(“d”, “chart.data”, “data”)

All of this is equivalent to the rather shorter Python statement. That’s PReS for you (
chart.data = [[100,107,113],[95,102,120]]

Miscellaneous

DiagraDeleteObject(objectName)

This will delete an object from the namespace. It can be used to delete named lists or entire drawings. In general, there is no need to delete things as all items in memory are cleaned up when the script exits; but this may add clarity and safety if reusing the same object names in loops.

Creating other Functions

All of these are built up from lower level functions which essentially build up and execute a chunk of Python code. If you wish to create others, the essential thing is to figure out the chunk of Python code needed to do the job, then write PreS code to construct it. RreportLab is happy to assist in this, and to work with customers in building up libraries of extension functions easily.

- 7 -

 Diagra-PreS interface – Support Document

