
PageCatcher Intro

Lombard Business Park
8 Lombard Road
Wimbledon
London, ENGLAND SW19 3TZ

103 Bayard Street
New Brunswick

New Jersey, 08901
USA

PageCatcher Intro

Contents

 1.1 What is PageCatcher for?

1.2 Running the demos

1.3 How does it work?

1.4 Known Deficiencies and Caveats

1.5 Workarounds

1.6 Page Extraction

1.7 Using Caught Pages

1.8 Demo Modes

1.9 Feedback

PageCatcher Intro $Revision: 1.10 $

Page 3

PageCatcher Intro
27 August 2001

This document provides a basic introduction to using PageCatcher. It includes explanations of what
PageCatcher does, how it can be used, what the current limitations are, how to run the demo applications, how
to run PageCatcher as a command line program, how to use PageCatcher with the RML2PDF application, and
how to use the PageCatcher programming interface within other programs.

What is PageCatcher for?
PageCatcher is an add-on utility for ReportLab's suite of enterprise reporting tools, as well as the most versatile
tool for batch manipulation of PDF files. The suite runs on all common computing platforms.

The free ReportLab core API lets you create PDF files directly using the Python scripting language; our
commercial RML2PDF Report Markup Language product lets you specify printed documents in
easy-to-understand XML and converts these to PDF. PageCatcher allows these packages to reuse complex
designs from existing PDF files in dynamically created PDF documents.

Many documents require elements such as fixed form layouts, headers, footers, corporate logos, or other art
work which are most cost effectively created by artists or design specialists using visual tools. With Adobe
Acrobat, they can use any tools they wish and convert it to PDF. These visual elements can then be seamlessly
integrated into PDF reports using PageCatcher.

In addition, many applications require batch or server-side modification of existing PDF documents - adding
simple annotations, combining documents or printing 2-up or 4-up. These can all be scripted trivially with
PageCatcher. There are many single-purpose programs to append, rearrange and extract text from PDFs;
PageCatcher's simple API and a scripting interface provides the most versatile solution on the market.

Running the demos
The demos are for Windows only and are packaged as a zip file. This creates a subdirectory called 'pageCatcher'
under the location where you unzip it; so you can safely unzip into C:

This distribution consists of:

● 00README.txt - starting point

● PageCatchIntro.html - this document(in html format)

● pageCatcher.exe - executable program

● sample1.pdf - a U.S. government tax form

● sample2.pdf - first ten pages of Psion's 1997 annual report

● sample3.pdf - a custom page backdrop

● five sample scripts (example*.py) to manipulate the examples

● runall.bat - batch file to run all demos at once

When run as a command line program PageCatcher has many command line options; the first argument is a
command. The general command line usage for PageCatcher is

pageCatcher.exe COMMAND ARGUMENT1 ARGUMENT2 ...

The COMMAND indicates what action pageCatcher should perform. The most general command is the 'exec'
command.

PageCatcher Intro $Revision: 1.10 $

Page 4

The 'exec' command runs a Python script that makes use of PageCatcher's functionality. In the demo distribution
we provide five scripts to demonstrate the versatility of the API. Try these commands from a command
[MSDOS] prompt:

pageCatcher.exe exec example1_fillform.py
pageCatcher.exe exec example2_reverse.py
pageCatcher.exe exec example3_append.py
pageCatcher.exe exec example4_fourpage.py
pageCatcher.exe exec example5_background.py

Each results in a PDF file being written which begins with 'out'; look at these as well as the samples to get an
idea of the capabilities. You can also use the batch file 'runall.bat' to run all five demos in one go.

How does it work?
There are two logical steps in using PageCatcher. First, pages must be extracted into a special data file format
using the PageCatcher filter script mode. Second, the extracted pages may be imported by ReportLab programs.
In many applications, extraction is a one-off design-time step, and the data files produced can then be included
in new documents at very high speeds.

The commercial product consists of a compiled Python module (similar to a Java class file) which can be used
in 3 ways:

● as a command line application with many useful options

● as a library within Python scripts

● controlled by tags within RML documents

The PageCatcher product can either function as a module in a larger Python installation (which should include
the ReportLab core libraries), or as a stand alone executable which contains the ReportLab distribution and all
other required software components.

In either mode you can write your own scripts as well as looking at the ones we provided. Please consult the
first few chapters of the Reportlab User Guide, and to look at the documentation for the Python scripting
language for additional information on using the ReportLab toolkit and the Python programming language.

PageCatcher also functions as a add on component to the RML2PDF program supported by the catchForms
RML tag. Please see the RML2PDF userguide for more information on using RML2PDF.

Known Deficiencies and Caveats
PageCatcher does not support PDF pages with stream content arrays compressed using the LZW compression
method. (Unfortunately this is used in British tax forms). We are working to add this support.

PageCatcher cannot capture pages that contain "Active PDF Form" annotations (such as checkboxes or fill-in
text areas).

You must supply a user password to process encrypted PDF files

pageCatcher... --password MYUSERPASSWORD

Since the preprocessor step for PageCatcher parses the entire PDF file, parsing very large files may consume a
great amount of computational resources even if only one page is extracted from the file.

Workarounds

PageCatcher Intro $Revision: 1.10 $

Page 5

If you have a copy of Adobe's Distiller, you can use it to work around the majority of problems. To do this, use
Distiller's printer emulation to "print to PDF" and the file created will be digestible by PageCatcher. (One known
exception: where the PDF file is encrypted and printing is not permitted).

Page Extraction
PageCatcher can extract pages from PDF files into the import data format either using a command line or using
a function call from within a python program or script. All extraction options may specify a prefix to use in the
form names and also for other internal purposes. It is important that if a generated document uses several
PageCatcher data files that the data files use different prefixes.

Line mode page extraction: In script mode PageCatcher prepares the contents of one or more pages of a PDF
file for use in other PDF files.

% PageCatcher makeforms pdffile [-s storagefile] [-p prefix]
 [--password password] [--test pdftestfile] [--all] [pagenumber]*

This command captures the pages from pdffile and places them in storagefile for later use. If the test option is
used then the captured pages are reimported and placed in the test file, overlayed with a centimeter grid.

Note! Pagenumbers start at 0 (zero) (with no necessary relation to the pagenumber shown by a PDF viewer
such as Acroread). If the pagenumbers are omitted only the first page of the document will be made into a form.

The "form names" for the forms derived from the pages will be prefix0 for the front page, prefix1 for the
following one, prefix2 for the one after that, and so forth.

For example

 % pageCatcher makeforms picture.pdf -s pic.data -p pict --test pictest.pdf 0 2

extracts the first and third page from picture.pdf, archiving them in pic.data for later use, giving them the form
names pict0 and pict2, respectively. The test file pictest.pdf will display the captured forms overlayed with a
centimeter grid.

If the storagefile is omitted it defaults to "storage.data". If the prefix is omitted it defaults to PF (for "page
form"). If the --all option is used then all pages of the document are captured.

Function call mode page extraction: The storeForms function extracts a form from within a program or script.
The Python programming language signature for storeForms is

storeForms(frompdffile, storagefile, pagenumbers=None,
 prefix="PageForms", all=None, verbose=0, password=""):

The usage of storeForms is analogous to the script usage described above, except that there is no option for test
output.

● frompdffile must provide the name of an existing PDF file to use for extracting the forms.

● storagefile must provide a name to use for the storage file in which to store the formatted form data.

● pagenumbers if present should be a Python list of integers listing the offsets of the pages to store as
forms (with the front page of the document at offset 0 and the next page at offset 1 and so forth).

● prefix when used should be a string to use as the form prefix.

● all when used and set specifies that all pages of the PDF file should be captured as forms.

● verbose if present and set will cause the generation process to print verbose commentary on the
extraction process (for debugging).

PageCatcher Intro $Revision: 1.10 $

Page 6

● password will be used if the PDF file has been encrypted. It should provide the User password for the
file (which is the empty string if the document is readable without a password).

The return value of storeForms is a list of strings listing the names of the forms stored in the storage file.

For example

 names = storeForms("manual.pdf", "manual.data", prefix="fourpage", all=1, verbose=1)

Stores all pages from manual.pdf in storage file manual.data using the prefix fourpage, with verbose
commentary printed to standard output.

Using Caught Pages
Both the ReportLab RML2PDF product and the ReportLab core Python API can use PageCatcher storage files
to place captured graphics in generated PDF files. In addition, PageCatcher provides several built in demo
modes listed below.

Catching Forms in RML: If you have production versions of both RML2PDF and PageCatcher you can use a
special Report Markup Language tag catchForms which imports all forms from a PageCatcher storage file for
use in an RML document.

For example: The following RML code fragment draws a caught form PF0 (stored in storage file storage.data)
onto a page backdrop.

<pageDrawing> <catchForms storageFile="storage.data"/> <doForm name="PF0"/>
</pageDrawing>

The catchForms tag can occur anywhere where a doForm tag can occur.

Catching Forms in Python using the ReportLab core API: You can also use PageCatcher caught pages in
documents created using the ReportLab core API for creating PDF programs. The restoreForms function
imports forms from a storage file into a pdfgen Canvas object.

def restoreForms(storagefilename, canv, verbose=0):

● storagefilename must be the string name of a PageCatcher storage file.

● canv must be a reportlab.pdfgen.canvas.Canvas object

● verbose if used and set instructs the function to print verbose progress and diagnostic information to
standard output (for debugging).

The result of the function is the list of names of the forms extracted from the storage file.

The following example function extracts all pages from a storage file and places them on 4 to a page in a new
PDF file.

def fourPage(storagefile, testfile, scalefactor = 0.5):
 print "placing forms from", storagefile, "into", testfile, "four to a page"
 from reportlab.pdfgen import canvas
 canv = canvas.Canvas(testfile)
 (width, height) = canv._pagesize
 names = restoreForms(storagefile, canv, verbose=1)
 while names:
 for (xoff, yoff) in [(0,1), (1,1), (0,0), (1,0)]:
 thisname = names[0]
 print thisname,
 canv.saveState()
 (x,y) = (xoff*width/2.0, yoff*height/2.0)
 canv.translate(x,y)
 canv.scale(scalefactor, scalefactor)

PageCatcher Intro $Revision: 1.10 $

Page 7

 canv.doForm(thisname)
 canv.restoreState()
 del names[0]
 if not names: break
 canv.showPage()
 print
 canv.save()
 print "wrote", testfile

The fourPage function first creates a canvas, extracts the forms for the canvas using restoreForms. Then it
iterates over the names of the forms placing the first at the upper right part of the page, the second at the upper
left, the third at the lower right, and the fourth at the lower left. Then the function continues this process on the
next page with the remaining forms until they all the forms have been placed. Finally the function saves the
document. For a detailed explanation of the methods of the canvas object please see the ReportLab core API
userguide.

Demo Modes
The PageCatcher program also includes a number of built in demonstration modes. These options are provided
as an easy way of showing some of the capabilities of PageCatcher without requiring any programming or the
use of RML2PDF.

help:

 % pageCatcher help

This mode prints a short explanation of the script options.

note:

 % pageCatcher note [pdffile]

This mode places a text string over the first page of pdffile, storing the result in "annotated.pdf". The font, size
and string are read interactively from the console.

4page:

 % pageCatcher 4page pdffile [--scale scalefactor]
 [--output pdfoutputfilename] [-s storagefilename]

This mode rewrites the pages of pdffile with 4 pages of the input on each page of the output ("save the trees"
mode).

exec

 % pageCatcher exec scriptFileName

This mode executes a python script. This mode is provided for the case where PageCatcher is distributed as a
stand alone executable for demonstration and evaluation purposes. It allows evaluation customers to try
scripting usage without having a Python installation. Note that not all legal scripts will work with the stand
alone evaluation version since the executable does not contain all standard library modules.

Additional Feature -- Copying and Appending PDF files
There are a number of additional features in PageCatcher beyond the fundamental operation of capturing pages
from one document and embedding them in another. These features are available when using "exec scriptname"
form or when importing the licensed pageCatcher component into another program. These features do not
require a PageCatcher license to work in production mode.

PageCatcher Intro $Revision: 1.10 $

Page 8

copyPages(frompdffile, tocanvas, withoutline=1)

The function copyPages will copy all pages of a PDF file into a ReportLab document (the document that is
being created using the canvas object). The pages will be copied without changes. For example the following
script will append any number of pdf files together into a new pdf document.

try:
 from rlextra.pageCatcher.pageCatcher import copyPages
except ImportError:
 pass # running inside pageCatcher module?

from reportlab.pdfgen import canvas

def doappend(topdffile, frompdffilelist):
 canv = canvas.Canvas(topdffile)
 for frompdffile in frompdffilelist:
 print "copying", frompdffile
 copyPages(frompdffile, canv)
 print "\n\nnow writing", topdffile
 canv.save()

if __name__=="__main__":
 # edit this
 doappend("out8_directcopy.pdf", ["sample1.pdf", "sample2.pdf", "sample3.pdf"])

If you do not want to include the outline from the copied document in the result unset the parameter
withoutline=0.

Note that copyPages may currently be used without purchasing a PageCatcher license. This functionality was
included to assist some open source users of our product who were urgently in need of this function. We do not,
however, promise to keep this free in future versions.

Feedback
We need and welcome feedback to help make this into a great product! Email info@reportlab.com, or join our
group of 200+ existing users by emailing reportlab-users@reportlab.com. Enjoy!

	PageCatcher Intro
	Contents
	What is PageCatcher for?
	Running the demos
	How does it work?
	Known Deficiencies and Caveats
	Workarounds
	Page Extraction
	Using Caught Pages
	Demo Modes
	Additional Feature -- Copying and Appending PDF files
	Feedback

