PyRXP 1.08

User Documentation

ReportLab

165 The Broadway
Wimbledon

London, UK SW19 INE

PyRXP User Documentation

$Revision: 2942 $

PyRXP Documentation

Contents

1. Introduction

11
12
13
14
15
16
17
18
1.9

Who is this document aimed at?
What is PyRXP?

License terms

Why another XML toolkit?
Design Goals

Design non-goals

How fast isit?

The Tuple Tree structure

Can | get involved?

2. Installation and Setup

21
22
221
2.3

Windows binary - pyRXP.pyd
Source Code installation
Post installation tests

Examples

3. Using pyRXP

31
311
312
313
314
315
32
33
34
35
3.6

Simple use without validation
The Parse method and callable instances of the parser
Empty tags and the ExpandEmpty flag
Processing instructions
Handling comments and the srcName attribute
A brief note on pyRXPU
Validating against aDTD
Interface Summary
Parser Object Attributes and Methods
List of Flags

Flag explanations and examples

4. The examples and utilities

41
4.2

Benchmarking

xmlutils and the TagWrapper

5. Future Directions

51
52
53
54

Test Suite
Standardize the wrapper
Other parsers

Better benchmark suite

Page 2

© 00 00 0 0 N o o o o o A b B b

NN N NN DNNNER B B B B s s s s
X A R R AN NN O ©O ©® ©® ®© 0l W Wk, O O O

PyRXP User Documentation $Revision: 2942 $

5.5 Type Conversion Utility 24
5.6 Sourcefile references 24
5.7 (longer term and debatable) Richer tuple tree structure 25

Page 3

PyRXP User Documentation $Revision: 2942 $

1. Introduction

1.1 Whoisthisdocument aimed at?

This document is aimed at anyone who wants to know how to use the pyRXP parser extension from Python. It's
assumed that you know how to use the Python programming language and understand its terminology. We make
no attempt to teach XML in this document, so you should already know the basics (what aDTD is, some of the
syntax etc.)

1.2 What is PyRXP?

PyRXP is a Python language wrapper around the excellent RXP parser. RXP is a validating namespace-aware
XML parser written in C. Together, they provide the fastest XML-parsing framework available to Python
programmers today .

RXP was written by Richard Tobin at the Language Technology Group, Human Communication Research
Centre, University of Edinburgh. PyRXP was written by Robin Becker at ReportL ab.

This documentation describes pyRXP-1.08 being used with RXP 1.4.0, as well as ReportLab's emerging XML
toolkit which usesit.

1.3 Licenseterms

Edinburgh University have released RXP under the GPL. Thisis generally fine for in-house or open-source use.
But if you want to useit in a closed-source commercia product, you may need to negotiate a separate license
with them. By contrast, most Python software uses aless restrictive license; Python hasits own license, and
ReportL ab uses the FreeBSD license for our PDF Toolkit, which means you CAN use it in commercia
products.

We licensed RXP for our commercia products, but are releasing pyRXP under the GPL. If you want to use
pyRXP for acommercial product, you need to purchase alicense. We are authorised resellers for RXP and can
sell you acommercial licenseto useit in your own products. PyRXPisidea for embedded use being
lightweight, fast and pythonic.

However, the XML framework ReportLab is using and building will be under our own license. It predates
pyRXP and can be made to work off any XML parser (such as expat), and we hope to produce something which
can go into the Python distribution one day.

1.4 Why another XML toolkit?

This grew out of real world needs which others in the Python community may share. ReportL ab make tools
which read in some kind of data and make PDF reports. One common input format these daysis XML. It'svery
convenient to express the interface to a system as an XML file. Some other system might send us some XML
with tags like <invoice> and <customer>, and we turn these into nice looking invoices.

Also, we have acommercial product called Report Markup Language — we sell a converter to turn RML files
into PDF. This hasto parse XML, and do it fast and accurately.

Typically we want to get this XML into memory asfast as possible. And, if the performance penalties are not
too great, we'd like the option to validate it as well. Validation is useful because we can stop bad data at the
point of input; if someone else sends our system an XML ‘invoice packet’ which is not valid according to the
agreed DTD, and gets a validation error, they will know what's going on. Thisis alot more helpful than getting
a strange and unrelated-sounding error during the formatting stage.

We tried to use all the parsers we could find. We found that almost all of them were constructing large object
models in Python code, which took along time and alot of memory. Even the fastest C-based parser, expat

Page 4

PyRXP User Documentation $Revision: 2942 $

(which was not yet a standard part of Python at the time) calls back into Python code on every start and end tag,
which defeats most of the benefit. Aaron Watters of ReportLab sat down for a couple of daysin 2000 and
produced his own parser, rparsexml, which uses string.find and got pretty much the same speed as pyexpat. We
evolved our own representation of atree in memory; which became the cornerstone of our approach; and when
we found RXP we found it easy to make awrapper around it to produce the "tuple tree".

We have now reached the point in our internal bag-of-tools where XML parsing is a standard component,
running entirely at C-like speeds, and we don't even think much about it any more. Which means we must be
doing something right and it'stime to share it :-)

1.5 Design Goals

Thisis part of an XML framework which we will polish up and release over time as we find the time to
document it. The general components are:

« A standard in-memory representation of an XML document (the tuple tree below)

« Various parsers which can produce this— principally pyRXP, but expat wrapping is possible

« A ‘lazy wrapper’ around thiswhich gives avery friendly Pythonic interface for navigating the tree

« A lightweight transformation tool which does alot of what XSLT can do, but again with Pythonic
syntax

In general we want to get the whole structure of an XML document into memory as soon as possible. Having
done so, we're going to traverse through it and move the data into our own object model anyway; so we don't
really care what kind of "node objects" we're dealing with and whether they are DOM-compliant. Our goals for
the whole framework are:

« Fast - XML parsing should not be an overhead for a program
« Validate when needed, with little or no performance penalty
« Construct a complete tree in memory which is easy and natural to access

« Aneasy lightweight wrapping system with some of the abilities of XSLT without the complexity
Note that pyRXP isjust the main parsing component and not the framework itself.

1.6 Design non-goals

It's often much more helpful to spell out what a system or component will NOT do. Most of all we are NOT
trying to produce a standards-compliant parser.

« NotaSAX parser
« NotaDOM parser
« Does not capture full XML structure

Why not? Aren't standards good?

It's great that Python has support for SAX and DOM, but these are basically Java (or at least cross-platform)
APIs. If you're doing Python, it's possible to make things simpler, and we've tried. Let's imagine you have some
XML containing an invoice tag, that thisin turn contains lineltems tags, and each of these has some text content
and an amount attribute. Wouldn't it be niceif you could write some Python code this simple?

i nvoi ce = pyRXP. Parser (). parse(nylnvoi ceText)
for lineltemin invoice:
print invoice. amount

Likewise, if anode isknown to contain text, it would be really handy to just treat it as a string. We have a
preprocessor we use to insert datainto HTML and RML files which lets us put Python expressionsin curly
braces, and we often do things like

Page 5

PyRXP User Documentation $Revision: 2942 $

<ht m ><head><titl e>My web page</titl e></head>
<body>

<hl>Statenment for {{xm .custoner.D spl ayNane}}</hil>
<l-- etc etc -->

</ body>

</htm >

<h1></h1l>

Try to write the equivalent in Java and you'll have loads of method calls to getFirstElement(), getNextElement()
and so on. Python has beautifully compact and readable syntax, and we'd rather useit. So we're not bothering
with SAX and DOM support ourselves. (Although if other people want to contribute full DOM and SAX
wrappers for pyRXP, we'll accept the patches).

1.7How fast isit?

The examplesfile includes a crude benchmarking script. It measures speed and memory allocation of a number
of different parsers and frameworks. This is documented later on. Suffice to say that we can parse hamlet in
0.15 seconds with full validation on a P500 laptop. Doing the same with the minidom in the Python distribution
takes 33 times as long and allocates 8 times as much memory, and does not validate. It also appearsto have a
significant edge on Microsoft's XML parser and on FourThought's cDomlette. Using pyRXP means that XML
parsing will typically take atiny amount of time compared to whatever your Python program will do with the
datalater.

1.8 TheTuple Treestructure

Most ‘tree parsers’ such as DOM create ‘ node objects of some sort. The DOM gives one consensus of what
such an object should look like. The problem isthat "objects' means "class instances in Python", and the
moment you start to use such beasts, you move away from fast C code to slower interpreted code. Furthermore,
the nodes tend to have magic attribute names like "parent” or "children”, which one day will collide with
structural names.

So, we defined the simplest structure we could which captured the structure of an XML document. Each tag is
represented as a tuple of

(tagNane, dict_of_attributes, |ist_of_children, spare)

Thedict_of_attributes can be None (meaning no attributes) or a dictionary mapping attribute names to values.
Thelist_of_children may either be None (meaning a singleton tag) or alist with elements that are 4-tuples or
plain strings.

A great advantage of this representation - which only uses built-in types in Python - is that you can marshal it
(and then zip or encrypt the results) with one line of Python code. Another is that one can write fast C code to
do things with the structure. And it does not require any classes installed on the client machine, which isvery
useful when moving xml-derived data around a network.

This does not capture the full structure of XML. We make decisions before parsing about whether to expand
entitiesand CDATA nodes, and the parser deals with it; after parsing we have most of the XML file's content,
but we can’t get back to the original in 100% of cases. For example following two representations will both

(with default settings) return the string " Smith & Jones’, and you can't tell from the tuple tree which onewasin
thefile:

<provi der>Smi th &anp; Jones<provi der>
Alternatively one can use

Page 6

PyRXP User Documentation $Revision: 2942 $

<provi der ><[CDATA[Smi t h & Jones]] ><provi der >

So if you want atool to edit and rewrite XML files with perfect fidelity, our model is not rich enough. However,
note that RXP itself DOES provide all the hooks and could be the basis for such a parser.

Page 7

PyRXP User Documentation $Revision: 2942 $

19 Can | get involved?

Sure! Join us on the Reportlab-users mailing list (www.egroups.comV/group/reportlab-users), and feel freeto
contribute patches. The final section of this manual has a brief "wish list".

Because the Reportlab Toolkit is used in many mission critical applications and because tiny changes in parsers

can have unintended consequences, we will keep checkin rights on sourceforge to atrusted few devel opers; but
we will do our best to consider and process patches.

Page 8

PyRXP User Documentation $Revision: 2942 $

2. Installation and Setup

We make available pre-built Windows binaries. On other platforms you can build it from source using distutils.
pyRXP is asingle extension module with no other dependencies outside Python itself.

2.1 Windows binary - pyRXP.pyd

ReportLab’s FTP server has awin32-dlls directory, which is sub-divided into Python versions. Each of these
has the version of the pyd file suitable for use with that version of Python. So, the version we use with Python
22isat

http://ww.reportlab.com ftp/w n32-dlls/2. 2/ pyRXP. pyd

Download the pyRXP DLL from the ReportLab FTP site. Save the pyRXP.pyd in the DLL s directory under
your Python installation (eg thisisthe C: \ Pyt hon22\ DLLs directory for a standard Windows installation of
Python 2.2).

2.2 Sour ce Code installation
The source code is open source under the GPL. Thisis available on SourceForge.

The source for pyRXP and a dlightly patched version of RXP is made available by anonymous CV S at
i pserver:anonynous@vs. reportl ab. sourceforge. net:/cvsroot/reportlab
To get the source use the commands

cvs -d :pserver:anonynous@yvs. reportlab. sourceforge. net:/cvsroot/reportlab |ogin
cvs -d :pserver:anonynous@yvs. reportlab. sourceforge. net:/cvsroot/reportlab co rl_addons/ pyRXP

enter a carriage return for the password.

If you have obtained the source code in the way described above, ther | _addons/ pyRXP directory should
contain adistutils script, set up. py which should be run with argument install or build. If successful a shared
library pyRXP. pyd or pyRXP. so should be built.

2.2.1 Post installation tests

Whichever method you used to get pyRXP installed, you should run the short test suite to make sure there
haven't been any problems.

Cdtother| _addons/ pyRXP/t est directory and runthefilet est RXPbasi c. py.

If you have built the Unicode aware version (py RXPU. pyd or pyRXPU. so, only available in the source
distribution at the moment), running the test program should show you this:

C:\tnmp\rl| _addons\ pyRXP\t est >pyt hon t est RXPbasi c. py

42 tests, no failures!

If you have only installed the standard (8-bit) pyRXP, you should see something like this:

C:\tnmp\rl _addons\ pyRXP\t est >t est RXPbasi c. py

Page 9

PyRXP User Documentation $Revision: 2942 $

21 tests, no failures!

These are basic health checks, which are the minimum required to make sure that nothing drastic iswrong. This
isthe very least that you should do - you should not skip this step!

If you want to be more thorough, there is a much more comprehensive test suite which tests XML compliance.
Thisisrun by afilecalledt est _xm t est sui t e. py, asoin thetest directory. This depends on a set of
more than 300 tests written by James Clark which you can download in the form of a zip file from

http://ww. reportlab.comiftp/xmtest.zip
or
ftp://ftp.jclark.com pub/xm/xmtest.zip

You can simply drop thisin the test directory and run the test_xmltestsuite file which will automatically unpack
and useit.

2.3 Examples

We have made available a small directory of example stuff to play with. Thiswill be superceded by the release
of the framework soon. As such thereis no formal package location for it; unzip anywhere you want.

http://ww. reportlab. conlftp/ pyRXP_exanpl es. zi p

The examples directory includes a couple of substantial XML fileswith DTDs, awrapper module called
xmlutils which provides easy access to the tuple tree, and the beginnings of a benchmarking script. The
benchmark script tries to find lots of XML parsers on your system. Both are documented in section 4 below.

Page 10

PyRXP User Documentation $Revision: 2942 $

3. Using pyRXP

3.1. Smple use without validation

3.1.1 The Parse method and callable instances of the par ser

Firstly you have to import the pyRXP module (using Python'si nport statement). While we are here, pyRXP
has a couple of attributes that are worth knowing about: ver si on givesyou astring with the version number
of the pyRXP module itself, and RXPVer si on givesyou string with the version information for the rxp
library embedded in the module.

C:\ Pyt hon22>pyt hon

Python 2.2.1 (#34, Apr 9 2002, 19:34:33) [MSC 32 bit (Intel)] on w n32
Type "hel p", "copyright", "credits" or "license" for nore infornation
>>> jnmport pyRXP

>>> pyRXP. ver si on

'1.08'

>>> pyRXP. RXPVer si on

"RXP 1.4.0 Copyright Richard Tobin, LTG HCRC, University of Edi nburgh

Once you have imported pyRXP, you can instantiate a parser instance using the Par ser class.
>>>p=pyRXP. Par ser ()

This by itself isn't very useful. But it does allow us to create a single parser which we can reuse many times. It
also alows us to type a short variable name rather than ‘ pyRXP.Parser’ every time we need to useit. p is now

an instance of Parser — Parser is a constructer that creates an object with its own methods and attributes. When
you create a parser like this you can also set multiple flags at the same time. This can save you from having to

set them separately, or having to set them all repeatedly each time you need to do a parse.

To parse some XML, you use the par se method. The simplest way of doing thisisto feed it astring. You
could create the string beforehand, or read it from disk (using something like s=open(' fi | enane',
"r').read()).PyRXPisn't designed to allow you to read the source directly from disk without an
intermediate step like this.

Aswell as exposing this method, instances of Parser are callable. This meansthat you can do this:

>>> p=pyRXP. Par ser ()
>>> p(' <a>sone text')

instead of this

>>> p=pyRXP. Par ser ()
>>> p. parse(' <a>some text")

Both would give you exactly thesameresult (' @', None, ['sone text'], None)))

WEe'll use the second style in this documentation, since it makes the examples slightly clearer. Whether you do
or not is up to you and your programming style.

WEe'll start with some very simple examples and leave validation for later.

Page 11

PyRXP User Documentation $Revision: 2942 $

>>> p. parse(' <tag>content</tag>')
("tag', None, ['content'], None)

This could also be expressed more long-windedly as
pyRXP. Par ser (). parse(' <tag>content</tag>")

Each element ("tag") in the XML is represented as atuple of 4 elements:

« 'tag' the tag name (aka element name).

« None: adictionary of the tag’s attributes (null here since it doesn’t have any).

« [‘content]: alist of included textual results. Thisisthe contents of the tag.

« None: the fourth element is unused by default.
Thistree structureis equivalent to the input XML, at least in information content. It is theoretically possible to
recreate the original XML from this tree since no information has been lost.

A tuple tree for more complex XML snippets will contain more of these tuples, but they will all use the same
structure as this one.

>>> p. parse(' <tagl><tag2>content</tag2></tagl>')
("tagl', None, [('tag2', None, ['content'], None)], None)

This may be easier to understand if we lay it out differently:

>>> p. parse(' <tagl><tag2>content</tag2></tagl>')
("tagl',
None,
[("tag2",
None,
["content'],
None)

I
None)

Tagl isthe name of the outer tag, which has no attributes. Its contentsis alist. This contents contains Tag2,
which has its own attribute dictionary (which is also empty sinceit has no attributes) and its content, which is
the string ‘ content’. It has the closing null element, then the list for Tag2 is closed, Tagl hasits own fina null
element and it too is closed.

The XML that is passed to the parser must be balanced. Any opening and closing tags must match. They
wouldn’t be valid XML otherwise.

3.1.2 Empty tags and the ExpandEmpty flag

Look at the following three examples. The first oneisafairly ordinary tag with contents. The second and third
can both be considered as empty tags — one is atag with no content between its opening and closing tag, and the
other is the singleton form which by definition has no content.

>>> p. parse(' <tag>ny contents</tag>')
("tag', None, ['nmy contents'], None)

>>> p. parse(' <tag></tag>')
("tag', None, [], None)

>>> p. parse(' <tag/>')
("tag', None, None, None)

Page 12

PyRXP User Documentation $Revision: 2942 $

Notice how the contents list is handled differently for the last two examples. Thisis how we can tell the
difference between an empty tag and its singleton version. If the content list is empty then the tag doesn’t have
any content, but if thelist is None, then it can't have any content since it’ s the singleton form which can’'t have
any by definition.

Another example:

>>>p. par se(' <out er Tag><i nner Tag>bb</ i nner Tag>aaa<si ngl eTag/ ></ out er Tag>')
('outerTag', None, [('innerTag', None, ['bb'], None), 'aaa', ('singleTag',
None, None, None)], None)

Again, thisis more understandable if we show it like this:

(' outerTag',
None,
[("innerTag',

None,

['bb'],

None) ,

'aaa',
("singleTag',

None,
None,
None)

I
None)

In this example, the tuple contains the outerTag (with no attribute dictionary), whose list of contents are the
innerTag, which contains the string ‘bb’ asits contents, and the singleton singleTag whose contents list is
replaced by anull.

The way that these empty tags are handled can be changed using the ExpandEnpt y flag. If ExpandEmpty is
set to 0, these singleton forms come out as None, as we have seen in the examples above. However, if you set it
to 1, the empty tags are returned as standard tags of their sort.

Thismay be useful if you will need to alter the tuple tree at some future point in your processing. Lists and
dictionaries are mutable, but Noneisn't and therefore can't be changed.

Some examples. Thisiswhat happensif we accept the default behaviour:

>>> p. parse(' <a>sonme text')
("a', None, ['some text'], None)

Explicitly setting ExpandEnpt y to 1 gives usthese:

>>> p. parse(' <a>sone text', ExpandEnpty=1)
("a', {}, ['some text'], None)

Notice how the None from the first exampleis being returned as an empty dictionary in the second version.
ExpandEmpty makes the sure that the attribute list is always a dictionary. It also makes sure that a self-closed
tag returns an empty list.

A very simple example of the singleton or 'self-closing’ version of atag.

Page 13

PyRXP User Documentation $Revision: 2942 $

>>> p. parse(' ', ExpandEnpty=0)
("b', None, None, None)

>>> p. parse(' ', ExpandEnpty=1)
("b", {}, [1, None)

Again, notice how the Nones have been expanded.

Some more examples show how these work with slightly more complex XML which uses nested tags:
>>> p. parse(' <a>sone textHel | o</ b>'", ExpandEnpty=0)
("a', None, ['sonme text', ('b', None, ['Hello'], None)], None)

>>> p. parse(' <a>sone textHel | o</ b>'", ExpandEnpty=1)
("a', {}, ['some text', ('b', {}, ['Hello'], None)], None)

>>> p. parse(' <a>sone text', ExpandEnpty=0)
("a', None, ['sonme text', ('b', None, [], None)], None)

>>> p. parse(' <a>sone text', ExpandEnpty=1)
("a', {}, ['sone text', ('b", {}, [1, None)], None)

>>> p. parse(' <a>some text', ExpandEnpty=0)
("a', None, ['sone text', ('b', None, None, None)], None)

>>> p. parse(' <a>some text', ExpandEnpty=1)
("a'", {}, ['some text', ('b'", {}, [], None)], None)

3.1.3 Processing instructions

Both the comment and processing instruction tag names are special - you can check for them relatively easily.
This section processing instruction and the next one covers handling comments.

A processing instruction allows devel opers to place information specific to an outside application within the
docuent. Y ou can handle it using the ReturnProcessingl nstruction attribute.

Thereisamodule global called piTagName (ie you need to do 'py RXP. pi TagName' rather than refering to an
instance like 'p.pi TagName' which won't work).

>>> pyRXP. pi TagNane
o

>>> p. par se(<a><?wor ks docunent ="hel | 0. doc" ?>")
(*a', None, [], None)

>>> #vani shes - |ike a coment

>>> p. parse(' <a><?wor ks docunent ="hel | 0. doc" ?>', ReturnProcessinglnstructions=1)
(*a', None, [('<?', {'nane': 'works'}, ['docunent="hello.doc"'], None)], None)

>>>

You can test against pi TagNane - but don't try and change it. See the section on trying to change
conment TagNane for an example of what would happen.

Page 14

PyRXP User Documentation $Revision: 2942 $

>>> p. parse(' <a><?wor ks docunent ="hel | 0. doc" ?></ a>'

Ret ur nProcessi ngl nstructions=1)[2][0][0] is pyRXP.pi TagNanme
1
>>> #identical! (ie sane object each tine)

Thisisasimple test and doesn't even have to process the characters. It allows you to process these lists looking
for processing instructions (or commentsif you are testing against commentTagName as show in the next
section)

3.1.4 Handling comments and the srcName attribute

NB The way ReturnComments works has changed between versions.

By default, PyRXP ignores comments and their contents are lost (this behaviour can be changed — see the
section of Flags later for details).

>>> p.parse(' <tag><!-- this is a coment about the tag --></tag>')
("tag', None, [], None)

>>> p.parse('<!-- this is a comment -->')
Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Docunent ends too soon

in unnamed entity at line 1 char 27 of [unknown]
Docunent ends too soon

Parse Failed

This causes an error, since the parser sees an empty string which isn't valid XML.

It is possible to set pyRXP to not swallow comments using the ReturnComments attribute.

>>> p.parse(’' <tag><!-- this is a comment about the tag --></tag>', ReturnConments=1)
("tag', None, [('<!--", None, [' this is a comment about the tag '], None)], None)

Using ReturnComments, the comment are returned in the same way as an ordinary tag, except that the tag has a
special name. This specia hame is defined in the module global ‘commentTagName'. Y ou can't just do
p.commentTagName, sinceit's a module object which isn't related to the parser at al.

>>> p. comment TagName

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

AttributeError: comrent TagNane

>>> pyRXP. comment TagNanme
T

Don't try to change the commentTagName. Not only would it be of dubious value, but it doesn't work. You
change the variable in the python module, but not in the underlying object, as the following example shows:

>>> jnmport pyRXP

>>> p=pyRXP. Par ser ()

>>> pyRXP. comment TagNane = "##" # TH'S WON T WORK!

>>> pyRXP. corment TagNanme

s

>>> #LOOKS LI KE | T WORKS - BUT SEE BELOW FOR WHY | T DOESN T

Page 15

PyRXP User Documentation $Revision: 2942 $

>>> p.parse(’' <a><!-- this is another comrent coment -->', ReturnComments = 1)
>>> # DOESN T WORK!

>>> ('a', None, [('<!--'", None, [' this is another coment comment '], None)], None)
>>> #SEE?

What it isuseful for isto check against to seeif you have been returned a comment:

>>> p. parse(' <a><!-- comment -->', ReturnComments=1)
("a', None, [('<!--', None, [' conment '], None)], None)
>>> p. parse(' <a><!-- comment -->, ReturnComents=1)[2][0][0]

T
>>> #this returns the coment name tag fromthe tuple tree...

>>> p. parse(’' <a><!-- conment -->, ReturnComments=1)[2][0][0] is pyRXP.comrent TagNane
1

>>> #they're identical

>>> #it's easy to check if it's a special nane

Using ReturnCommentsiis useful, but there are circumstances where it fails. Comments which are outside the
root tag (in the following snippet, that means which are outside the tag '<tag/>', ie the last element in the line)
will till be lost:

>>> p.parse(' <tag/><!-- this is a comment about the tag -->', ReturnComments=1)
("tag', None, None, None)

To get around this, you need to use the ReturnList attribute:

>>> p.parse(’' <tag/><!-- this is a conment about the tag -->', ReturnComments=1, ReturnList=1)
[("tag', None, None, None), ('<!--', None, [' this is a comment about the tag '], None)]
>>>

Since we've seen anumber of errorsin the preceding paragraphs, it might be a good time to mention the
srcName attribute. The Parser has an attribute called srcName which is useful when debugging. Thisisthe
name by which pyRXP refers to your code in tracebacks. This can be useful —for example, if you have read the
XML infrom afile, you can use the srcName attribute to show the filename to the user. It doesn’t get used for
anything other than pyRXP Errors — SyntaxErrors and | OErrors still won't refer to your XML by name.

>>> p.srcName = 'nycode'

>>> p. parse(' <a>aaa</a')

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Expected > after nane in end tag, bu
in unnaned entity at line 1 char 10 of mnycode

Expected > after nane in end tag, but got <ECE>

Parse Fail ed!

The XML that is passed to the parser must be balanced. Not only must the opening and closing tags match (they
wouldn’t be valid XML otherwise), but there must also be one tag that encloses al the others. If there are valid
fragmentsthat aren’t enclosed by another valid tag, they are considered ‘ multiple elements’ and a pyRXP Error
israised.

>>> p. parse(' <a>")
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
pyRXP. Error: Error: Docunment contains nultiple elenents
in unnamed entity at line 1 char 9 of [unknown]

Page 16

PyRXP User Documentation $Revision: 2942 $

>>> p. par se(' <out er ><a></ a></outer>")
(‘outer', None, [('a', None, [], None), ('b', None, [], None)], None)

3.1.5 A brief note on pyRXPU

PyRXPU isthe 16-bit Unicode aware version of pyRXP.

In most cases, the only difference in behaviour between pyRXP and pyRXPU is that pyRXPU returns Unicode
strings. This may be inconveneient for some applications as Python doesn't yet handle unicode filenames etc
terribly well. A work around isto get pyRXPU to return utf8 using the ReturnUTF8 boolean argument in the
parser creation or call. Then all values are returned as utf8 encoded strings.

pyRXPU is built to try and do the right thing with both unicode and non-unicode strings.

>>> jnmport pyRXPU
>>> pyRXPU. Par ser () (' <a><?wor ks docunent ="hel | 0. doc" ?>', ReturnProcessingl nstructions=1)
(u"a', None, [(u'<?, {'nanme': u' works'}, [u' document="hello.doc"'], None)], None)

In most cases, the only way to tell the difference (other than sending in Unicode) is by the module name.

>>> jnmport pyRXPU
>>> pyRXPU. __nanme__
' py RXPU

>>> jnmport pyRXP
>>> pyRXP. __nanme__
" pyRXP'

Page 17

PyRXP User Documentation $Revision: 2942 $

3.2. Validating against aDTD

This section describes the default behaviours when validating against aDTD. Most of these can be changed —
see the section on flags later in this document for details on how to do that.

For the following examples, we' re going to assume that you have a single directory with the DTD and any test
filesinit.

>>> jnport os
>>> 0s. get cwd()
"CA\Vtmp\\ pyRXP_tests

>>> os. listdir('.")
["sanplel.xm ', 'sanple2.xm ', 'sanple3.xm ', 'sanple4.xm "', 'tinydtd.dtd']

>>> dtd = open('tinydtd.dtd', 'r').read()

>>> print dtd
<l-- Atiny sanple DID for use with the PyRXP docunentation -->
<!-- $Header $-->

<! ELEMENT a (b)>
<! ELEMENT b (#PCDATA) *>

Thisisjust to show you how trivial the DTD isfor this example. It's about as simple as you can get —two tags,
both mandatory. Both aand b must appear in an xml file for it to conform to this DTD, but you can have as
many b’s as you want, and they can contain any content.

>>> fn=open('sanplel.xm', "r').read()

>>> print fn
<?xm version="1.0" encodi ng="i so-8859-1" standal one="no" ?>
<I DOCTYPE a SYSTEM "ti nydtd. dtd">

<a>
This is the contents
</ a>

Thisisthe simple examplefile. Thefirst line isthe XML declaration, and the standalone="no" part says that
there should be an external DTD. The second line says where the DTD is, and gives the name of the root
element —ain this case. If you put thisin your XML document, pyRXP will attempt to validate it.

>>p. par se(fn)

("a",
None
["\n", ("b'", None, ['This tag is the contents'], None), '\n'],
None)

>>>

Thisisasuccessful parse, and returns atuple tree in the same way as we have seen where the input was a string.

If you have areference to anon-existant DTD filein afile (or one that can’t be found over a network), then any
attempt to parse it will raise a pyRXP error.

>>> fn=open(' sanple2.xm"', 'r').read()

>>> print fn
<?xm version="1.0" encodi ng="i so-8859-1" standal one="no" ?>

Page 18

PyRXP User Documentation $Revision: 2942 $

<! DOCTYPE a SYSTEM "nonexi stent.dtd">

<a>
This is the contents
</ a>

>>> p. parse(fn)

C:\tnmp\ pyRXP_t est s\ nonexi stent.dtd: No such file or directory

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Couldn't open dtd entity file:///C:/tnp/pyRXP_tests/nonexistent.dtd
in unnamed entity at line 2 char 38 of [unknown]

Thisisadifferent kind of error to one where no DTD is specified:

>>> fn=open(' sanpled.xm', 'r').read()

>>> print fn

<?xm version="1.0" encodi ng="i so-8859-1" standal one="no" ?>
<a>

This is the contents

</ a>

>>> p. par se(fn, NONoDTDWar ni ng=0)

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Docunent has no DTD, validating abandoned
in unnamed entity at line 3 char 2 of [unknown]

If you have errorsin your XML and it does not validate against the DTD, you will get a different kind of
pyRXPError.

>>> fn=open('sanple3.xm"', 'r').read()

>>> print fn
<?xm version="1.0" encodi ng="i so-8859-1" standal one="no" ?>
<I DOCTYPE a SYSTEM "ti nydtd. dtd">

<X>
This is the contents
</ x>

>>> p. parse(fn)
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
pyRXP. Error: Error: Start tag for undeclared el ement x
in unnamed entity at line 4 char 3 of [unknown]
>>>

Whether PyRXP validates against a DTD, together with a number of other behaviours is decided by how the
various flags are set.

By default, Err or OnVal i di t yErrors issettol, asisNoNoDTDWar ni ng. If you want the XML you are
parsing to actually validate against your DTD, you should have both of these set to 1 (which is the default
value), otherwise instead of raising a pyRXP error saying the XML that doesn’t conform to the DTD (which
may or may not exist) thiswill be silently ignored. Y ou should also have Val i dat e setto 1, otherwise
validation won't even be attempted.

Note that the first examplesin this chapter - the ones without aDTD - only worked because we had carefully
chosen what seem like the sensible defaults. It is set to validate, but not to complain if the DTD ismissing. So
when you feed it something without a DTD declaration, it notices the DTD is missing but continuesin

Page 19

PyRXP User Documentation $Revision: 2942 $

non-validating mode. There are numerous flags set out below which affect the behaviour.

Page 20

PyRXP User Documentation $Revision: 2942 $

3.3 Interface Summary

The python modul e exports the following:

Error apython exception

Versi on the string version of the module

RXPVer si on the version string of the rxp library embedded in the module
parser_fl ags adictionary of parser flags - the values are the defaults for parsers
Par ser (*kw) Create a parser

pi TagNane special tagname used for processing instructions

comment TagNane qyecigl tagname used for comments

aspecial do nothing constant that can be used as
, the 'fourth' argument and causes location information
recordlocation g perecorded in the fourth position of each node.

3.4 Parser Object Attributesand Methods

par se(src)
We have aready seen that thisisthe main interface to the parser. It returns ReportLab's standard tuple tree
representation of the xml source. The string src contains the xml.

The keyword arguments can modify the instance attributes for this call only. For example, we can do

>>>p. parse(' <a>sone text, ReturnList=1, ReturnComents=1)

instead of

>>>p. Ret ur nLi st =1
>>>p. Ret ur nConmmrent s=1
>>>p. par se(' <a>sonme text')

Any other parses using p will be unaffacted by the values of ReturnList and ReturnCommentsin the first
example, whereas all parses using p will have ReturnList and ReturnComments set to 1 after the second.

sr cName

A name used to refer to the source text in error and warning messages. It isinitially set as '<unknown>’. If you
know that the data came from "spam.xml" and you want error messages to say so, you can set thisto the
filename.

war nCB 0,

Warning callback. Should either be None, O, or a callable object (e.g. afunction) with a single argument which
will receive warning messages. If Noneis used then warnings are thrown away. If the default O value is used
then warnings are written to the internal error message buffer and will only be seen if an error occurs.

eoCB

Entity-opening callback. The argument should be None or a callable method with a single argument. This
method will be called when external entities are opened. The method should return a (possibly modified) URI.
So, you could intercept a declaration referring to http://some.slow.box/somefile.dtd and point at at the local copy
you know you have handy, or implement a DTD-caching scheme.

fourth
This argument should be None (default) or a callable method with no arguments. If callable, will be called to get
or generate the 4™ item of every 4-item tuple or list in the returned tree. May also be the special value

Page 21

PyRXP User Documentation $Revision: 2942 $

pyRXP.recordL ocation to cause the 4™ jtem to be set to alocation information tuple
((startname, startline,startchar),(endname,endline,endchar)).

Page 22

PyRXP User Documentation $Revision: 2942 $

3.5List of Flags

Flag attributes corresponding to the rxp flags; the values are the module standard defaults. pyRXP.parser_flags
returns these as a dictionary if you need to refer to these inline.

Flag (1=on, O=o0ff) Default
Al l omul ti pl eEl enent s

Al | owndecl ar edNSAt t ri but es
Casel nsensitive

Error OnBadChar acterEntities
Error OnUndefi nedAttri but es
Er r or OnUndef i nedEl enent s
Error OnUndefi nedEntities

Er r or OnUnquot edAt t ri but eVal ues
ErrorOnValidityErrors
ExpandCharacterEntities
ExpandEmpt y

ExpandGeneral Entities
IgnoreEntities

I gnorePl acenent Errors

Mai nt ai nEl enent St ack
MakeMut abl eTr ee

Mer gePCDat a

NoNoDTDWar ni ng

Nor mal i seAttri but eVal ues
ProcessDTD

Rel axedAny

Ret ur nComment s

Ret ur nProcessi ngl nstructions
Ret ur nDef aul t edAttri but es
Ret ur nLi st

Ret ur nNanmespaceAttri but es
Ret ur nUTF8 (pyRXPU)

Si npl eEr r or For mat

Trust SDD

Val i dat e

War nOnRedef i ni ti ons

XMLExt er nal | Ds

XM.LessThan

XMLM scWFErrors
XM_Nanespaces

XMLPr edef i nedEntities
XM.Space

XMLStrictWErrors

r O r O r O r O Fr PP OO OO P OO OO P P P O P O O PFP ©OFP P P B O O PFP O O O

XM_Synt ax

Page 23

PyRXP User Documentation $Revision: 2942 $

3.6 Flag explanations and examples

With so many flags, thereisalot of scope for interaction between them. These interactions are not documented
yet, but you should be aware that they exist.

AllowMultipleElements

Default: 0

Description:

A piece of XML that does not have a single root-tag enclosing all the other tags is described as having multiple
elements. By default, thiswill raise a pyRXP error. Turning this flag on will ignore this and not rai se those
errors.

Example:

>>> p. Al |l owMul ti pl eEl enents = 0

>>> p. parse(' <a>")

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Docunent contains nultiple elenents
in unnamed entity at line 1 char 9 of [unknown]

>>> p. All owMul tipl eEl ements = 1
>>> p. parse(' <a>")
("a', None, [], None)

>>>

AllowUndeclaredNSAttributes
Default: 0

Description:

[to be added]

Example:
[to be added]

Casel nsensitive
Default: O

Description:
This flag controls whether the parse is case sensitive or not.

Example:

>>> p. Casel nsensitive=1
>>> p. parse(' <a>'")
("A, None, [], None)

>>> p. Casel nsensitive=0

>>> p. parse(' <a>'")

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Msnatched end tag: expected , got </ A>
in unnaned entity at line 1 char 7 of [unknown]

>>>

ErrorOnBadChar acter Entities
Default: 1

Description:
If thisis set, character entities which expand to illegal values are an error, otherwise they are ignored with a
warning.

Example:

Page 24

PyRXP User Documentation $Revision: 2942 $

>>> p. Error OnBadChar acter Entiti es=0
>>> p. parse(' <a>ϧ </ a>')
("a', None, ['""], None)

>>> p. parse(' <a>ϧ </ a>')
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
pyRXP. Error: Error: 0x3e7 is not a valid 8-bit XM. character
in unnamed entity at line 1 char 10 of [unknown]

ErrorOnUndefinedAttributes
Default: O

Description:
If thisisset and thereisa DTD, references to undeclared attributes are an error.

See ad so: ErrorOnUndefinedElements

ErrorOnUndefinedElements
Default: 0

Description:
If thisis set and thereisaDTD, references to undeclared el ements are an error.

See also: ErrorOnUndefinedAttributes

ErrorOnUndefinedEntities
Default: 1

Description:
If thisis set, undefined general entity references are an error, otherwise awarning is given and a fake entity
constructed whose value looks the same as the entity reference.

Example:
>>> p. Error OnUndef i nedEntiti es=0

>>> p. parse(' <a>&dud; </ a>")
("a', None, ['&dud;'], None)

>>> p. Error OnUndefi nedEntiti es=1
>>> p. parse(' <a>&dud; </ a>')
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
pyRXP. Error: Error: Undefined entity dud
in unnamed entity at line 1 char 9 of [unknown]

ErrorOnUnquotedAttributeValues
Default: 1

Description:
[to be added]

ErrorOnValidityErrors
Default: 1

Description:
If thisison, validity errors will be reported as errors rather than warnings. Thisis useful if your program wants
to rely on the validity of itsinput.

ExpandEmpty
Default: 0
Description:

Page 25

PyRXP User Documentation $Revision: 2942 $

If false, empty attribute dicts and empty lists of children are changed into the value None in every 4-item tuple
or list in the returned tree.

ExpandChar acter Entities

Default: 1

Description:

If thisis set, entity references are expanded. If not, the references are treated as text, in which case any text
returned that starts with an ampersand must be an entity reference (and provided MergePCData is off, all entity
references will be returned as separate pieces).

See also: ExpandGeneral Entities, ErrorOnBadCharacterEntities

Example:
>>> p. ExpandCharacterEntities=1

>>> p. parse(' <a>m </ a>')
("a', None, ['m], None)

el

>>> p. ExpandCharacterEntiti es=0
>>> p. parse(' <a>m </ a>')
("a', None, ['m'], None)

ExpandGeneralEntities

Default: 1

Description:

If thisis set, entity references are expanded. If not, the references are treated as text, in which case any text
returned that starts with an ampersand must be an entity reference (and provided MergePCData is off, all entity
references will be returned as separate pieces).

See also: ExpandCharacterEntities

Example:

>>> p. ExpandGeneral Entities=0
>>> p. parse(' <a>&anp; </ a>')
("a", None, ['&anp;'], None)

>>> p. ExpandGeneral Entities=1
>>> p. parse(' <a>&anp; </ a>')
("a', None, ['"&], None)

I gnor eEntities
Default: 0

Description:
If thisflag is on, normal entity substitution takes place. If it is off, entities are passed through unaltered.

Example:
>>> p.lgnoreEntities=0

>>> p. parse(' <a>&anp; </ a>')
("a', None, ['&], None)

e

>>> p.lgnoreEntities=1
>>> p. parse(' <a>&anp; </ a>')
("a'", None, ['&anp;'], None)

I gnorePlacementErrors
Default: 0

Description:
[to be added]

Page 26

PyRXP User Documentation $Revision: 2942 $

MaintainElementStack
Default: 1

Description:
[to be added]

MakeM utableTree
Default: O

Description:
If false, nodes in the returned tree are 4-item tuples; if true, 4-item lists.

MergePCData
Default: 1

Description:
If thisis set, text datawill be merged across comments and entity references.

NoNoDTDWarning
Default: 1

Description:
Usually, if Val i dat e isset, the parser will produce awarning if the document hasno DTD. Thisflag
suppresses the warning (useful if you want to validate if possible, but not complain if not).

Nor maliseAttributeValues
Default: 1

Description:
If thisis set, attributes are normalised according to the standard. Y ou might want to not normalise if you are
writing something like an editor.

ProcessDTD

Default: 0

Description:

If Tr ust SDD isset and aDOCTYPE declaration is present, the internal part is processed and if the document
was not declared standalone or if Val i dat e isset the external part is processed. Otherwise, whether the
DOCTYPE isautomatically processed depends on Pr ocessDTD; if ProcessDTD is not set the user must call
Par seDt d() if desired.

See dso: TrustSDD

RelaxedAny
Default: 0

Description:
[to be added]

ReturnComments
Default: 0

Description:
If thisis set, comments are returned as nodes with tag name pyRXP.commentTagName, otherwise they are
ignored.

Example:

>>> p. ReturnComments = 1

>>> p.parse('<a><!-- this is a comment -->'")

("a', None, [('<!--", None, [' this is a comment '], None)], None)
>>> p. ReturnComments = 0

>>> p.parse('<a><!-- this is a comment -->'")

("a', None, [], None)

Page 27

PyRXP User Documentation $Revision: 2942 $

See dlso: ReturnList

ReturnDefaultedAttributes
Default: 1

Description:
If thisis set, the returned attributes will include ones defaulted as aresult of ATTLIST declarations, otherwise
missing attributes will not be returned.

ReturnList
Default: O

Description:

If both ReturnComments and ReturnList are both set to 1, the whole list (including any comments) is returned
from aparse. If ReturnList is set to 0, only the first tuplein thelist isreturned (ie the actual XML content rather
than any comments before it).

Example:

>>> p. Ret ur nComment s=1

>>> p. ReturnList=1

>>> p.parse(' <!-- coment --><a>Sone Text<!-- another coment -->')
[("<'--", None, [' comment '], None), ('a', None, ['Sone Text'], None), ('<!--'
None, [' another comment '], None)]

>>> p. Ret ur nLi st =0

>>> p.parse('<!-- coment --><a>Sone Text<!-- another comment -->')
("a', None, ['Some Text'], None)
>>>

See also: ReturnComments

ReturnNamespaceAttributes
Default: 0

Description:
[to be added]

ReturnProcessingl nstructions
Default: 0

Description:
If thisis set, processing instructions are returned as nodes with tagname pyRXP.pi Tagname, otherwise they are
ignored.

SimpleError Format
Default: 0

Description:
This causes the output on errors to get shorter and more compact.

Example:

>>> p. Si npl eEr r or For mat =0

>>> p. parse(' <a>causes an error")

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

pyRXP. Error: Error: Msnatched end tag: expected , got
in unnamed entity at line 1 char 22 of [unknown]

>>> p. Si npl eErr or For mat =1

>>> p. parse(' <a>causes an error")

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

Page 28

PyRXP User Documentation $Revision: 2942 $

pyRXP. Error: [unknown]:1:22: Msmatched end tag: expected got

TrustSDD
Default: 1

Description:

If Tr ust SDD isset and aDOCTYPE declaration is present, the internal part is processed and if the document
was not declared standalone or if Val i dat e itis set the external part is processed. Otherwise, whether the
DOCTYPE isautomatically processed depends on Pr ocessDTD; if ProcessDTD is not set the user must call
Par seDt d() if desired.

See dso: ProcessDTD

Validate
Default: 1

Description:
If thisison, the parser will validate the document. If it’s off, it won't. It is not usually agood ideato set thisto
0.

WarnOnRedefinitions
Default: 0

Description:
If thisison, awarning is given for redeclared elements, attributes, entities and notations.

XMLExternall Ds
Default: 1

Description:
[to be added]

XMLLessThan
Default: 0

Description:
[to be added]

XMLMiscWFErrors
Default: 1

Description:
To do with well-formedness errors.

See also: XML StrictWFErrors

XML Namespaces

Default: 0

Description:

If thisison, the parser processes namespace declarations (see below). Namespace declarations are not returned

as part of thelist of attributes on an element. The namespace value will be prepended to names in the manner
suggested by James Clark ieif xmins:foo="foovalue' is active then foo: name-->{fovalue}name.

See also: XML Space

XML PredefinedEntities
Default: 1

Description:

If thisis on, pyRXP recognises the standard preset XML entities&anp; & t; > " and
') . If thisis off, al entities including the standard ones must be declared in the DTD or an error will be
raised.

Page 29

PyRXP User Documentation $Revision: 2942 $

Example:

>>> p. XMLPredefi nedEntities=1
>>> p. parse(' <a>&anp; </ a>')
("a', None, ['&], None)

>>> p. XMLPr edefi nedEntiti es=0
>>> p. parse(' <a>&anp; </ a>')
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
pyRXP. Error: Error: Undefined entity anp
in unnamed entity at line 1 char 9 of [unknown]

XML Space
Default: 0

Description:
If thisison, the parser will keep track of xml:space attributes

See also: XML Namespaces

XMLStrictWFErrors
Default: 1

Description:
If thisis set, various well-formedness errors will be reported as errors rather than warnings.

XML Syntax
Default: 1

Description:
[to be added]

Page 30

PyRXP User Documentation $Revision: 2942 $

4. The examples and utilities

The zip file of examples contains a couple of validatable documentsin xml, the samples used in this manual,
and two utility modules: one for benchmarking and one for navigating through tuple trees.

4.1 Benchmarking

benchmarks.py is a script aiming to compare performance of various parsers. We include it to make our results
reproducable. It isnot awork of art and if you think you can make it fairer or better, tell us how! Here'san
example run.

C:\code\rl extra\radxm \ sanpl es>benchnmar ks. py

Interactive benchmark suite for Python XM. parsers
Parsers avail abl e:

opened sanple XM file 444220 bytes | ong
1. pyRXP

r par sexm

m ni dom

msxm 30

4dom

cdom ette

ook wN

Shall we do nenmory tests? i.e. you |look at Task Manager? y/n vy

Test nunber (or x to exit)>1

testing pyRXP

Pre-parsing: please input python process nmenory in kb >2904

Post - parsi ng: pl ease input python process menory in kb >7180

12618 tags, 8157 attributes

pyRXP: init 0.0315, parse 0.3579, traverse 0.1594, nmem used 4276kb, mem factor 9.86

Instead of the traditional example (hamlet), we took as our example an early version of the Report Markup
Language user guide, which is about half a megabyte. Hamlet's XML has almost no attributes; ours contains lots
of attributes, many of which will need conversion to numbers one day, and so it provides a more rounded basis
for benchmarks

We measure several factors. First there is speed. Obviously this depends on your PC. The script exits after each
test so you get a clean process. We measure () the time to load the parser and any code it needs into memory
(important if doing CGl); (b) time to produce the tree, using whatever the parser natively produces; and (c) time
to traverse the tree counting the number of tags and attributes. Note, () might be important with a'very lazy'
parser which searched the source text on every request. Also, later on we will be able to ook at the difference
between traversing araw tuple tree and some objects with friendlier syntax.

Next is memory. Actually you have to measure that! If anyone can give usthe APl calls on Windows and other
platforms to find out the current process size, we'd be grateful! What we are interested in is how big the
structure isin memory. The above shows that the memory allocated is 9.86 times as big as the original XML
text. That sounds alot, but it's actually much less than most DOM parsers.

By contrast, here's the result for the minidom parser included in the official Python distro:
m nidom init 0.3039, parse 12.6435, traverse 0.0000, nmem used 29136kb, mem factor 67.16

Even though minidom uses pyexpat (which isin C) to parse the XML, it's 36 times slower and uses 7 times
more memory. And of course it does not validate.

4.2 xmlutilsand the TagWrapper
Page 31

PyRXP User Documentation $Revision: 2942 $

Finally, we've included a'tag wrapper' class which makes it easy to navigate around the tuple tree. Thisis
randomly selected from many such modules we have used in various projects; the next task for usisto pick
ONE and publish it! Essentially, it useslazy evaluation to try and figure out which part of the XML you want. If
you ask for 'tag.spam’, it will check if (a) there is an attribute called spam, or (b) if thereis a child tag whose tag
nameis 'spam'. And you can iterate over child nodes as a sequence. And, the str() method of atag which just
contains text isjust the text. The snippets below should make it clear what we are doing.

>>> tree = pyRXP. Parser (). parse(srcText)
>>> grcText = open('rml _a. xm). read()
>>> tree = pyRXP. Parser (). parse(srcText)
>>> jnmport xmutils

>>> tw = xmutils. TagWapper(tree)

>>> tw

TagW apper <docunent >

>>> tw fil ename

' RML_User Gui de_1_0. pdf"’

>>> |en(tw . story) # how many tags in the story?
1566

>>> tw. tenpl at e. pageSi ze

' (595, 842)'

>>> for elemin tw story:
mif elemtagName == 'hl':
mmprint elem

... mm

RML User Cuide

Part | - The Basics
Part Il - Advanced Features
Part 11l - Tables

Appendi x A - Col ors recogni zed by RML
Appendi x B - dossary of terns and abbreviations
Appendi x C - Letters used by the Geek tag
Appendi x D - Conmand reference

Generic Flowables (Story Elenments)

Graphi cal Drawi ng Operations

Graphi cal State Change Operations

Style El ements

Page Layout Tags

Speci al Tags

>>>

We are NOT saying thisis a particularly good or complete wrapper; but we do intend to standardize on one such
wrapper module in the near future, because it makes access to XML information much more 'pythonic' and
pleasant. It could be used with tuple trees generated by any parser. Please et us know if you have any
suggestions on how it should behave.

Page 32

PyRXP User Documentation $Revision: 2942 $

5. Future Directions

5.1 Test Suite

We urgently need a unittest-based suite full of samples saying ‘parse this XML with these flags and assert fact
X about the output’. If done right, this could be used to generate the documentation on the parser flags as well.
It will be very important when allowing pluggable parsers.

In the meantime, there are some simple tests. Look at thefilet est\t . py.

5.2 Standar dize the Wrapper

A standard wrapper classto let you ‘drill down’ into the tuple tree. This should be as pythonic as possible.

5.3 Other parsers

Include tuple tree constructors based on other parsers. One could use pyexpat (in fact afew lines could be added
to pyexpat itself to produce a tuple tree in some future version of Python). Thiswould be useful for people who
cannot install extensions but have Python 2.0 or above. We aso have our own parser, Aaron Watters

rparsexml, which uses no C code and is thus useful in places where you cannot build extensions. The latter is
not guaranteed to be 100% standards compliant, but this means we can modify it to handle bad XML.

5.4 Better Benchmark Suite

Extend this so that it knows about more parsers and (if possible) can detect the memory used by them without
needing to pause and look in Task Manager. Ensure we are being fair to competitors and using their parsers
optimally.

5.5 Type Conversion Utility

In the parsed output, everything isastring. Yet XML isfull of attributes which "mean" numeric values. In
particular our own Report Markup Language has numerous attributes like x, y, width, height, as well as color
attributes. It would be really useful to generalize the conversion step. Let’s say you can provide a mapping like
this

1. (tag, attribute) -> reader function
2. attribute -> reader function

Many of the reader functions arejust int or float; others could be written in Python or C. For example we have
standard length expressions like "3cm” or "8.5in" which we convert to float values in points. This could say that
(8) if this tag name and attribute name has a converter function, use it in-place; (b) if the attribute name has a
converter, use that; and if (c) there is nothing specified, leave it as a string.

So the tree could be converted “in place” with asimple API call, at C-like speeds. And we'd be able to remove a
lot of code from our application and replace it with avery simple mapping. Expect this real soon now!

Note that this type-conversion is not an XML standard. The one true way is probably to use XML Schema; but
for now thisis not possible as we don't have a schema-validating parser, and we are big fans of stuff that works
now.

5.6 Sour ce File References

Debug/trace info: add an extra structure to show the position in the original source file where the tag starts and
finished. Thiswould be a parse-time option, as you might not want to take the time and memory. Thiswould let
an application raise an error saying not just that the color tag contained a bad color value, but aso that it

Page 33

PyRXP User Documentation $Revision: 2942 $

occurred at line 2352 of the input. Useful! Thisiswhy we reserved the final tuple element for future use.

5.7 (longer term and debatable) Richer Tuple Tree Structure

It has been suggested that we expand the structure in a couple of ways. Instead of tuples we could make anew
C-based node object with aricher model.

Each node should have some pointer back to its parent. This makes navigation alot easier, but means alittle
more housekeeping.

We could then aso let you distinguish things like CDATA and entity nodes and make it afully rewritable DOM
implementation, running at C-like speeds. We could even go further and keep references to things like
comments, which are not part of the XML standard.

PyRXP meets our needs already and we won't rush into this. Still, it might be an attractive enhancement for a
future version of Python; essentially one would make a lightweight XML node into a built-in type.

Page 34

	PyRXP User Documentation
	1. Introduction
	1.1 Who is this document aimed at?
	1.2 What is PyRXP?
	1.3 License terms
	1.4 Why another XML toolkit?
	1.5 Design Goals
	1.6 Design non-goals
	1.7 How fast is it?
	1.8 The Tuple Tree structure
	1.9 Can I get involved?

	2. Installation and Setup
	2.1 Windows binary - pyRXP.pyd
	2.2 Source Code installation
	2.2.1 Post installation tests

	2.3 Examples

	3. Using pyRXP
	3.1. Simple use without validation
	3.1.1 Parse methods and callable instances of the parser
	3.1.2 Empty tags and the ExpandEmpty flag
	3.1.3 Processing instructions
	3.1.4 Handling comments and the srcName attribute
	3.1.5 A brief note on pyRXPU

	3.2. Validating against a DTD
	3.3 Interface Summary
	3.4 Parser() Attributes and Methods
	3.5 List of Flags
	3.6 Flag explanations and examples

	4. The examples and utilities
	4.1 Benchmarking
	4.2 xmlutils and the TagWrapper

	5. Future Directions
	5.1 Test Suite
	5.2 Standardize then Wrapper
	5.3 Other parsers
	5.4 Better Benchmark Suite
	5.5 Type Conversion Utility
	5.6 Source File References
	5.7 Richer Tuple Tree Structure

