
 1

How to integrate Changeforms into an Application
Server
This document describes one possible strategy for using the changeforms functionality
within a separate Web applications server infrastructure.

Purpose
The purpose of the example integration is to generate PDF documents containing
completed forms. In the most complex case this process might require several
intermediate steps in order to (1) create a “prepopulated” form from a generic document
and (2) create a final document using values filled in by the application client. The
following table lists the steps anticipated in this document A through H and indicate
whether the action is completed by the outside client, the application server or the
changeforms components.

Step Outside App Server Changeforms
A) request Application server

formulates an XML
message describing
what fields to
populate and what
fields to mark read
only. Message is
sent to Changeforms
with the location of
the source PDF file
and the callback
URL.

B) prepopulation Changeforms
rewrites the PDF
contents from the
source, modifying
the appropriate PDF
fields and stores the
result in a temporary
file location.

C) Prepopulated
form is transferred

 Application server
sends the
prepopulated form
to the client

D) Client fills
prepopulated form

In Acrobat reader
the client fills the
form and submits it,
resulting in a post
request.

 2

E) POST to XML
translation.

 Application server
receives the post
request from the
client and constructs
an XML message
which describes the
fully filled and
frozen form.

F) Document Freeze Changeforms
receives the XML
and constructs the
frozen PDF
document, storing it
in a temporary
location.

G) Archive frozen
document

 Application server
archives the frozen
PDF document and
transfers it back to
the client.

H) download Client (optionally)
downloads the
frozen form

For some document types the prepopulation step may not be required, in which case the
steps A and B may be omitted and the C step can deliver the source unmodified source
document.

For the purposes of this document it suffices to discuss the step combinations A/B and
E/F since the other steps pertain to the application server and the client and do not relate
to the changeforms functionality.

XML for changing a PDF document containing a form
The XML markup dialect described by changeforms/formdocument.dtd
provides a mechanism for describing changes to AcroForms stored inside XML
documents and for specifying how those forms should be changed.

Dumping form information
The changeforms program provides a mechanism for extracting a description of the
Acroform in a PDF document using the command line

changeforms.py --dumpxml fromdocument.pdf > xmlparameters.xml

For example the command

 3

changeform.py --dumpxml formtest.pdf > test.xml
Yields the file test.xml with contents

<!DOCTYPE formDocument SYSTEM "formdocument.dtd">

<formDocument filename="formtest.pdf"

 frozen="0">

 <fieldInfo name="checkbox" kind="check">
 <value>Yes</value>
 <option>Yes</option>
 <option>Off</option>
 </fieldInfo>

 <fieldInfo name="listbox" kind="choice">
 <value>item3</value>
 <option>item1</option>
 <option>item2</option>
 <option>item3</option>
 </fieldInfo>

 <fieldInfo name="radio" kind="radio">
 <value>radio 1</value>
 <option>radio 1</option>
 <option>radio 2</option>
 <option>radio 3</option>
 </fieldInfo>

 <fieldInfo name="submit" kind="push">
 <url>http://localhost/cgi-bin/test.cgi</url>
 </fieldInfo>

 <fieldInfo name="text" kind="text">
 <value>this is the default</value>
 </fieldInfo>

</formDocument>

Developers may use the “—dumpxml” feature both to determine the contents of an
acrobat form and to test the results.

Generating an altered form in a new document
In both steps A and E above the Application server software creates an XML description
used to generate a new document containing an altered acrobat form. Use changeform to
process the source document and the XML description to generate a new document using
the command line:

changeforms.py --rewrite fromdocument.pdf todocument.pdf parameters.xml

For example if the file test.xml contains the form description

 4

<!DOCTYPE formDocument SYSTEM "formdocument.dtd">

<formDocument filename="formtest.pdf"
 frozen="1">

 <fieldInfo name="radio">
 <value>radio 2</value>
 </fieldInfo>

 <fieldInfo name="submit">
 <url>http://finance.yahoo.com/index.html</url>
 </fieldInfo>
</formDocument>

A new PDF file f.pdf may be generated using the command line

changeforms.py --rewrite formtest.pdf f.pdf test1.xml

In this case the f.pdf document will be “frozen” since the XML specifies frozen="1"
and the value of the “radio” field will be “radio 2” instead of “radio 1”.

XML Form Specification
An XML form specification for modifying a form in a source file is “similar” to an XML
dump of the form in a source file, except:

1. Only fields that require modification need be listed (each once only).
2. The options may be omitted.
3. Field kinds may be omitted.
4. Values may be omitted if they are not altered.
5. The “frozen” attribute of the formDocument tag must always be present with

value either “0” or “1”.

There are four basic ways the applications server software may need to modify acrobat
forms.

1. Change the default value for fields.
2. Mark an individual field “read only.”
3. Alter a submit button URL.
4. Freeze the document.

Each of these are discussed below.

How to change the default value for fields
To modify the default value for a field in the XML description, include the field in the
sequence of fields and specify the new value using the value tag. If the field is a field
with a limited number of option values the new value must be one of the options.

 5

For example the following description specifies that the “radio” field should have the
value “radio 2”.

<!DOCTYPE formDocument SYSTEM "formdocument.dtd">

<formDocument filename="formtest.pdf" frozen=”0”>
 <fieldInfo name="radio">
 <value>radio 2</value>
 </fieldInfo>
</formDocument>

In this case if we specified “xxx” for the new value the changeform.py program would
terminate in an error condition sing “xxx” is not one of the options permissible for the
“radio” field.

How to mark an individual field “read only”
To mark a field read only in the XML description, include the field in the sequence of
fields and add the “<readonly/>” tag to the field tag contents.

For example the following XML changes the value of the “radio” field as above and also
requests that the “text” field be marked readonly.

<!DOCTYPE formDocument SYSTEM "formdocument.dtd">

<formDocument filename="formtest.pdf" frozen=”0”>
 <fieldInfo name="text">
 <readonly/>
 </fieldInfo>
 <fieldInfo name="radio">
 <value>radio 2</value>
 </fieldInfo>
</formDocument>

As shown any number of fields may be modified in one XML description.

How to alter a submit button URL
To alter the URL of a submit button, include the submit button field in the sequence of
fields and add the “<url>” tag to the field tag contents with the new URL.

For example the following XML changes the value of the “radio” field as above, requests
that the “text” field be marked readonly, and modifies the URL of the “submit” button to
http://www.sun.com/go.cgi.

<!DOCTYPE formDocument SYSTEM "formdocument.dtd">

 6

<formDocument filename="formtest.pdf" frozen=”0”>
 <fieldInfo name="submit" kind="push">
 <url>http://www.sun.com/go.cgi</url>
 </fieldInfo>
 <fieldInfo name="text">
 <readonly/>
 </fieldInfo>
 <fieldInfo name="radio">
 <value>radio 2</value>
 </fieldInfo>
</formDocument>

Note that URLs for submit buttons should generally be absolute URLs because the PDF
form has no HTTP base context (unlike HTML documents in a browser).

How to freeze the document
To freeze a document specify frozen=”1” in the top level tag. For example the following
XML changes the value of the “radio” field as above, changes the value of the “text”
field to “garbanzo beans”, and freezes the resulting document.

<!DOCTYPE formDocument SYSTEM "formdocument.dtd">

<formDocument filename="formtest.pdf" frozen=”1”>
 <fieldInfo name="text">
 <value>garbanzo beans</value>
 </fieldInfo>
 <fieldInfo name="radio">
 <value>radio 2</value>
 </fieldInfo>
</formDocument>

Frozen documents will be encrypted with “no password” to ensure that no further
modifications to the document or to the form inside the document are permitted.

