Code snippets are bits of re-usable code submitted by the ReportLab community. We don't promise that they are accurate, up-to-date or correct - use them at your own risk!
We'd love it if you could participate by submitting your own snippets and sharing your experience with others by commenting. You will need to create a user account by filling out our very simple form.
View all snippets
Spreadsheet Table
Spreadsheet Tables is based on platypus/tables.py and has exacly the same properties. It passes all the same test scripts.
In addition to reportlab 2.4 Table functionality it can:
- repeat rows from below
- calculate formulas on runtime.
Each formula is a subclass of the Formula class. It has an _evaluate method with the definition:
def evaluate(self, data, repeatrows, repeat_rows_b, active_rows, cell_coord), where:
- data = all data passed to Table at creation time.
- repeat_rows, repeat_rows_b = how many rows are repeated on top or bottom of Table.
- active_rows = tuple containing range of visible rows
- cell_coord = tuple containing col, row position of evaluated formula
This information is enough to calculate the sum of column values from the current page, or a certain range of data (not necessarily one row or column) etc.
I didn't have much time so I implemented only two formulas for demo purposes. I believe it is possible to emulate all spreadsheet formulas with it. It should be no problem to write formula for time addition etc. Since Formula classes have access to their cell style, you can change colors depending of cell value - for example black font for positive and red for negative numbers.
To use, cut and past the entire snippet into a file named spreadsheettables.py
More information is at the Spreadsheet Tables for ReportLab web page.
from decimal import Decimal as D, InvalidOperation as DConversionError from reportlab.platypus.tables import * from reportlab.platypus.tables import (_rowLen, _calc_pc, _hLine, _multiLine, _convert2int, _endswith, _isLineCommand, _setCellStyle) def spanFixDim(V0,V,spanCons,FUZZ=rl_config._FUZZ): #assign required space to variable rows equally to existing calculated values M = {} for (x0,x1),v in spanCons.iteritems(): t = sum([V[x]+M.get(x,0) for x in xrange(x0,x1+1)]) if t>=v-FUZZ: continue #already good enough X = [x for x in xrange(x0,x1+1) if V0[x] is None] #variable candidates if not X: continue #something wrong here mate v -= t v /= float(len(X)) for x in X: M[x] = M.get(x,0) + v for x,v in M.iteritems(): V[x] += v class SpreadsheetTable(Flowable): def __init__(self, data, colWidths=None, rowHeights=None, style=None, repeatRows=0, repeatCols=0, splitByRow=1, emptyTableAction=None, ident=None, hAlign='CENTER', vAlign='MIDDLE', normalizedData=0, cellStyles=None, activeRows=None, repeatRowsB=0): self.ident = ident self.hAlign = hAlign self.vAlign = vAlign if not isinstance(data,(tuple,list)): raise ValueError("%s invalid data type" % self.identity()) self._nrows = nrows = len(data) self.repeatRows = repeatRows self._repeatRowsB = repeatRowsB if activeRows is None: activeRows = (None, nrows - repeatRowsB) self._activeRows = activeRows self._cellvalues = [] _seqCW = isinstance(colWidths,(tuple,list)) _seqRH = isinstance(rowHeights,(tuple,list)) if nrows: self._ncols = ncols = max(map(_rowLen,data)) elif colWidths and _seqCW: ncols = len(colWidths) else: ncols = 0 if not emptyTableAction: emptyTableAction = rl_config.emptyTableAction if not (nrows and ncols): if emptyTableAction=='error': raise ValueError("%s must have at least a row and column" % self.identity()) elif emptyTableAction=='indicate': self.__class__ = Preformatted global _emptyTableStyle if '_emptyTableStyle' not in globals().keys(): _emptyTableStyle = ParagraphStyle('_emptyTableStyle') _emptyTableStyle.textColor = colors.red _emptyTableStyle.backColor = colors.yellow Preformatted.__init__(self,'%s(%d,%d)' % (self.__class__.__name__,nrows,ncols), _emptyTableStyle) elif emptyTableAction=='ignore': self.__class__ = Spacer Spacer.__init__(self,0,0) else: raise ValueError('%s bad emptyTableAction: "%s"' % (self.identity(),emptyTableAction)) return # we need a cleanup pass to ensure data is strings - non-unicode and non-null if normalizedData: self._cellvalues = data else: self._cellvalues = data = self.normalizeData(data) if not _seqCW: colWidths = ncols*[colWidths] elif len(colWidths)!=ncols: if rl_config.allowShortTableRows and isinstance(colWidths,list): n = len(colWidths) if n<ncols: colWidths[n:] = (ncols-n)*[colWidths[-1]] else: colWidths = colWidths[:ncols] else: raise ValueError("%s data error - %d columns in data but %d in column widths" % (self.identity(),ncols, len(colWidths))) if not _seqRH: rowHeights = nrows*[rowHeights] elif len(rowHeights) != nrows: raise ValueError("%s data error - %d rows in data but %d in row heights" % (self.identity(),nrows, len(rowHeights))) for i,d in enumerate(data): n = len(d) if n!=ncols: if rl_config.allowShortTableRows and isinstance(d,list): d[n:] = (ncols-n)*[''] else: raise ValueError("%s expected %d not %d columns in row %d!" % (self.identity(),ncols,n,i)) self._rowHeights = rowHeights[:] self._argH = rowHeights self._colWidths = self._argW = colWidths if cellStyles is None: cellrows = [] for i in xrange(nrows): cellcols = [] for j in xrange(ncols): cellcols.append(CellStyle(`(i,j)`)) cellrows.append(cellcols) self._cellStyles = cellrows else: self._cellStyles = cellStyles self._bkgrndcmds = [] self._linecmds = [] self._spanCmds = [] self._nosplitCmds = [] self.repeatCols = repeatCols self.splitByRow = splitByRow if style: self.setStyle(style) def __repr__(self): "incomplete, but better than nothing" r = getattr(self,'_rowHeights','[unknown]') c = getattr(self,'_colWidths','[unknown]') cv = getattr(self,'_cellvalues','[unknown]') import pprint cv = pprint.pformat(cv) cv = cv.replace("\n", "\n ") return "%s(\n rowHeights=%s,\n colWidths=%s,\n%s\n) # end table" % (self.__class__.__name__,r,c,cv) def normalizeData(self, data): """Takes a block of input data (list of lists etc.) and - coerces unicode strings to non-unicode UTF8 - coerces nulls to '' """ def normCell(stuff): if stuff is None: return '' elif isinstance(stuff,unicode): return stuff.encode('utf8') else: return stuff outData = [] for row in data: outRow = [normCell(cell) for cell in row] outData.append(outRow) return outData def identity(self, maxLen=30): '''Identify our selves as well as possible''' if self.ident: return self.ident vx = None nr = getattr(self,'_nrows','unknown') nc = getattr(self,'_ncols','unknown') cv = getattr(self,'_cellvalues',None) if cv and 'unknown' not in (nr,nc): b = 0 for i in xrange(nr): for j in xrange(nc): v = cv[i][j] if isinstance(v,(list,tuple,Flowable)): if not isinstance(v,(tuple,list)): v = (v,) r = '' for vij in v: r = vij.identity(maxLen) if r and r[-4:]!='>...': break if r and r[-4:]!='>...': ix, jx, vx, b = i, j, r, 1 else: v = v is None and '' or str(v) ix, jx, vx = i, j, v b = (vx and isinstance(v,basestring)) and 1 or 0 if maxLen: vx = vx[:maxLen] if b: break if b: break if vx: vx = ' with cell(%d,%d) containing\n%s' % (ix,jx,repr(vx)) else: vx = '...' return "<%s@0x%8.8X %s rows x %s cols>%s" % (self.__class__.__name__, id(self), nr, nc, vx) def _listCellGeom(self, V,w,s,W=None,H=None,aH=72000): if not V: return 0,0 aW = w - s.leftPadding - s.rightPadding aH = aH - s.topPadding - s.bottomPadding t = 0 w = 0 canv = getattr(self,'canv',None) sb0 = None for v in V: vw, vh = v.wrapOn(canv, aW, aH) sb = v.getSpaceBefore() sa = v.getSpaceAfter() if W is not None: W.append(vw) if H is not None: H.append(vh) w = max(w,vw) t += vh + sa + sb if sb0 is None: sb0 = sb return w, t - sb0 - sa def _listValueWidth(self,V,aH=72000,aW=72000): if not V: return 0,0 t = 0 w = 0 canv = getattr(self,'canv',None) return max([v.wrapOn(canv,aW,aH)[0] for v in V]) def _calc_width(self,availWidth,W=None): if getattr(self,'_width_calculated_once',None): return #comments added by Andy to Robin's slightly terse variable names if not W: W = _calc_pc(self._argW,availWidth) #widths array if None in W: #some column widths are not given canv = getattr(self,'canv',None) saved = None if self._spanCmds: colSpanCells = self._colSpanCells spanRanges = self._spanRanges else: colSpanCells = () spanRanges = {} spanCons = {} if W is self._argW: W0 = W W = W[:] else: W0 = W[:] V = self._cellvalues S = self._cellStyles while None in W: j = W.index(None) #find first unspecified column w = 0 for i,Vi in enumerate(V): v = Vi[j] s = S[i][j] ji = j,i span = spanRanges.get(ji,None) if ji in colSpanCells and not span: #if the current cell is part of a spanned region, t = 0.0 #assume a zero size. else:#work out size t = self._elementWidth(v,s) if t is None: raise ValueError("Flowable %s in cell(%d,%d) can't have auto width\n%s" % (v.identity(30),i,j,self.identity(30))) t += s.leftPadding+s.rightPadding if span: c0 = span[0] c1 = span[2] if c0!=c1: x = c0,c1 spanCons[x] = max(spanCons.get(x,t),t) t = 0 if t>w: w = t #record a new maximum W[j] = w if spanCons: spanFixDim(W0,W,spanCons) self._colWidths = W width = 0 self._colpositions = [0] #index -1 is right side boundary; we skip when processing cells for w in W: width = width + w self._colpositions.append(width) self._width = width self._width_calculated_once = 1 def _elementWidth(self,v,s): if isinstance(v,(list,tuple)): w = 0 for e in v: ew = self._elementWidth(e,s) if ew is None: return None w = max(w,ew) return w elif isinstance(v,Flowable) and v._fixedWidth: if hasattr(v, 'width') and isinstance(v.width,(int,float)): return v.width if hasattr(v, 'drawWidth') and isinstance(v.drawWidth,(int,float)): return v.drawWidth elif isinstance(v, Formula): w = v.get_max_width(s) return w # Even if something is fixedWidth, the attribute to check is not # necessarily consistent (cf. Image.drawWidth). Therefore, we'll # be extra-careful and fall through to this code if necessary. if hasattr(v, 'minWidth'): try: w = v.minWidth() # should be all flowables if isinstance(w,(float,int)): return w except AttributeError: pass v = (v is not None and str(v) or '').split("\n") fontName = s.fontname fontSize = s.fontsize return max([stringWidth(x,fontName,fontSize) for x in v]) def _calc_height(self, availHeight, availWidth, H=None): H0 = self._argH H = self._rowHeights W = self._colWidths hmax = lim = len(H) if None in H: canv = getattr(self,'canv',None) saved = None #get a handy list of any cells which span rows. should be ignored for sizing if self._spanCmds: rowSpanCells = self._rowSpanCells colSpanCells = self._colSpanCells spanRanges = self._spanRanges colpositions = self._colpositions else: rowSpanCells = colSpanCells = () spanRanges = {} if canv: saved = canv._fontname, canv._fontsize, canv._leading spanCons = {} FUZZ = rl_config._FUZZ while None in H: i = H.index(None) V = self._cellvalues[i] # values for row i S = self._cellStyles[i] # styles for row i h = 0 j = 0 for j,(v, s, w) in enumerate(zip(V, S, W)): # value, style, width (lengths must match) ji = j,i span = spanRanges.get(ji,None) if ji in rowSpanCells and not span: continue # don't count it, it's either occluded or unreliable if isinstance(v,(tuple,list,Flowable)): if isinstance(v,Flowable): v = (v,) if w is None and not self._canGetWidth(v): raise ValueError("Flowable %s in cell(%d,%d) can't have auto width in\n%s" % (v[0].identity(30),i,j,self.identity(30))) if canv: canv._fontname, canv._fontsize, canv._leading = s.fontname, s.fontsize, s.leading or 1.2*s.fontsize if ji in colSpanCells: if not span: continue w = max(colpositions[span[2]+1]-colpositions[span[0]],w) dW,t = self._listCellGeom(v,w or self._listValueWidth(v),s) if canv: canv._fontname, canv._fontsize, canv._leading = saved dW = dW + s.leftPadding + s.rightPadding if not rl_config.allowTableBoundsErrors and dW>w: from reportlab.platypus.doctemplate import LayoutError raise LayoutError("Flowable %s (%sx%s points) too wide for cell(%d,%d) (%sx* points) in\n%s" % (v[0].identity(30),fp_str(dW),fp_str(t),i,j, fp_str(w), self.identity(30))) else: v = (v is not None and str(v) or '').split("\n") t = (s.leading or 1.2*s.fontSize)*len(v) t += s.bottomPadding+s.topPadding if span: r0 = span[1] r1 = span[3] if r0!=r1: x = r0,r1 spanCons[x] = max(spanCons.get(x,t),t) t = 0 if t>h: h = t #record a new maximum H[i] = h if spanCons: spanFixDim(H0,H,spanCons) hmax = self._activeRows[1] activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible height = self._height = sum(H[:self.repeatRows] + H[activeRows0:hmax] + H[self._nrows-self._repeatRowsB:]) self._rowpositions = [height] # index 0 is actually topline; we skip when processing cells for h in H[:self.repeatRows] + H[activeRows0:hmax] + H[self._nrows-self._repeatRowsB:]: height = height - h self._rowpositions.append(height) assert abs(height)<1e-8, 'Internal height error' def _calc(self, availWidth, availHeight): #if hasattr(self,'_width'): return #in some cases there are unsizable things in #cells. If so, apply a different algorithm #and assign some withs in a less (thanks to Gary Poster) dumb way. #this CHANGES the widths array. if (None in self._colWidths or '*' in self._colWidths) and self._hasVariWidthElements(): W = self._calcPreliminaryWidths(availWidth) #widths else: W = None # need to know which cells are part of spanned # ranges, so _calc_height and _calc_width can ignore them # in sizing if self._spanCmds: self._calcSpanRanges() if self._nosplitCmds: self._calcNoSplitRanges() # calculate the full table width self._calc_width(availWidth,W=W) # calculate the full table height self._calc_height(availHeight,availWidth) if self._spanCmds: #now work out the actual rect for each spanned cell from the underlying grid self._calcSpanRects() def _hasVariWidthElements(self, upToRow=None): """Check for flowables in table cells and warn up front. Allow a couple which we know are fixed size such as images and graphics.""" if upToRow is None: upToRow = self._nrows for row in xrange(min(self._nrows, upToRow)): for col in xrange(self._ncols): value = self._cellvalues[row][col] if not self._canGetWidth(value): return 1 return 0 def _canGetWidth(self, thing): "Can we work out the width quickly?" if isinstance(thing,(list, tuple)): for elem in thing: if not self._canGetWidth(elem): return 0 return 1 elif isinstance(thing, Flowable): return thing._fixedWidth # must loosen this up else: #str, number, None etc. #anything else gets passed to str(...) # so should be sizable return 1 def _calcPreliminaryWidths(self, availWidth): """Fallback algorithm for when main one fails. Where exact width info not given but things like paragraphs might be present, do a preliminary scan and assign some best-guess values.""" W = list(self._argW) # _calc_pc(self._argW,availWidth) verbose = 0 totalDefined = 0.0 percentDefined = 0 percentTotal = 0 numberUndefined = 0 numberGreedyUndefined = 0 for w in W: if w is None: numberUndefined += 1 elif w == '*': numberUndefined += 1 numberGreedyUndefined += 1 elif _endswith(w,'%'): percentDefined += 1 percentTotal += float(w[:-1]) else: assert isinstance(w,(int,float)) totalDefined = totalDefined + w if verbose: print 'prelim width calculation. %d columns, %d undefined width, %0.2f units remain' % ( self._ncols, numberUndefined, availWidth - totalDefined) #check columnwise in each None column to see if they are sizable. given = [] sizeable = [] unsizeable = [] minimums = {} totalMinimum = 0 elementWidth = self._elementWidth for colNo in xrange(self._ncols): w = W[colNo] if w is None or w=='*' or _endswith(w,'%'): siz = 1 current = final = None for rowNo in xrange(self._nrows): value = self._cellvalues[rowNo][colNo] style = self._cellStyles[rowNo][colNo] new = elementWidth(value,style)+style.leftPadding+style.rightPadding final = max(current, new) current = new siz = siz and self._canGetWidth(value) # irrelevant now? if siz: sizeable.append(colNo) else: unsizeable.append(colNo) minimums[colNo] = final totalMinimum += final else: given.append(colNo) if len(given) == self._ncols: return if verbose: print 'predefined width: ',given if verbose: print 'uncomputable width: ',unsizeable if verbose: print 'computable width: ',sizeable # how much width is left: remaining = availWidth - (totalMinimum + totalDefined) if remaining > 0: # we have some room left; fill it. definedPercentage = (totalDefined/availWidth)*100 percentTotal += definedPercentage if numberUndefined and percentTotal < 100: undefined = numberGreedyUndefined or numberUndefined defaultWeight = (100-percentTotal)/undefined percentTotal = 100 defaultDesired = (defaultWeight/percentTotal)*availWidth else: defaultWeight = defaultDesired = 1 # we now calculate how wide each column wanted to be, and then # proportionately shrink that down to fit the remaining available # space. A column may not shrink less than its minimum width, # however, which makes this a bit more complicated. desiredWidths = [] totalDesired = 0 effectiveRemaining = remaining for colNo, minimum in minimums.items(): w = W[colNo] if _endswith(w,'%'): desired = (float(w[:-1])/percentTotal)*availWidth elif w == '*': desired = defaultDesired else: desired = not numberGreedyUndefined and defaultDesired or 1 if desired <= minimum: W[colNo] = minimum else: desiredWidths.append( (desired-minimum, minimum, desired, colNo)) totalDesired += desired effectiveRemaining += minimum if desiredWidths: # else we're done # let's say we have two variable columns. One wanted # 88 points, and one wanted 264 points. The first has a # minWidth of 66, and the second of 55. We have 71 points # to divide up in addition to the totalMinimum (i.e., # remaining==71). Our algorithm tries to keep the proportion # of these variable columns. # # To do this, we add up the minimum widths of the variable # columns and the remaining width. That's 192. We add up the # totalDesired width. That's 352. That means we'll try to # shrink the widths by a proportion of 192/352--.545454. # That would make the first column 48 points, and the second # 144 points--adding up to the desired 192. # # Unfortunately, that's too small for the first column. It # must be 66 points. Therefore, we go ahead and save that # column width as 88 points. That leaves (192-88==) 104 # points remaining. The proportion to shrink the remaining # column is (104/264), which, multiplied by the desired # width of 264, is 104: the amount assigned to the remaining # column. proportion = effectiveRemaining/totalDesired # we sort the desired widths by difference between desired and # and minimum values, a value called "disappointment" in the # code. This means that the columns with a bigger # disappointment will have a better chance of getting more of # the available space. desiredWidths.sort() finalSet = [] for disappointment, minimum, desired, colNo in desiredWidths: adjusted = proportion * desired if adjusted < minimum: W[colNo] = minimum totalDesired -= desired effectiveRemaining -= minimum if totalDesired: proportion = effectiveRemaining/totalDesired else: finalSet.append((minimum, desired, colNo)) for minimum, desired, colNo in finalSet: adjusted = proportion * desired assert adjusted >= minimum W[colNo] = adjusted else: for colNo, minimum in minimums.items(): W[colNo] = minimum if verbose: print 'new widths are:', W self._argW = self._colWidths = W return W def minWidth(self): W = list(self._argW) width = 0 elementWidth = self._elementWidth rowNos = xrange(self._nrows) values = self._cellvalues styles = self._cellStyles for colNo in xrange(len(W)): w = W[colNo] if w is None or w=='*' or _endswith(w,'%'): final = 0 for rowNo in rowNos: value = values[rowNo][colNo] style = styles[rowNo][colNo] new = (elementWidth(value,style)+ style.leftPadding+style.rightPadding) final = max(final, new) width += final else: width += float(w) return width # XXX + 1/2*(left and right border widths) def _calcSpanRanges(self): """ Work out rects for tables which do row and column spanning. This creates some mappings to let the later code determine if a cell is part of a "spanned" range. self._spanRanges shows the 'coords' in integers of each 'cell range', or None if it was clobbered: (col, row) -> (col0, row0, col1, row1) Any cell not in the key is not part of a spanned region. This method use absolute data positions so its result can be reused after split. """ # Checks if span ranges are already computed. if getattr(self, '_spanRanges', None) is not None: return self._spanRanges = spanRanges = {} for x in xrange(self._ncols): for y in xrange(self._nrows): spanRanges[x,y] = (x, y, x, y) self._colSpanCells = [] self._rowSpanCells = [] csa = self._colSpanCells.append rsa = self._rowSpanCells.append for (cmd, start, stop) in self._spanCmds: x0, y0 = start x1, y1 = stop if x0!=x1 or y0!=y1: if x0!=x1: #column span for y in xrange(y0, y1+1): for x in xrange(x0,x1+1): csa((x,y)) if y0!=y1: #row span for y in xrange(y0, y1+1): for x in xrange(x0,x1+1): rsa((x,y)) for y in xrange(y0, y1+1): for x in xrange(x0,x1+1): spanRanges[x,y] = None # set the main entry spanRanges[x0,y0] = (x0, y0, x1, y1) def _calcNoSplitRanges(self): """ This creates some mappings to let the later code determine if a cell is part of a "nosplit" range. self._nosplitRanges shows the 'coords' in integers of each 'cell range', or None if it was clobbered: (col, row) -> (col0, row0, col1, row1) Any cell not in the key is not part of a spanned region """ # Checks if nosplit ranges are already computed. if getattr(self, '_nosplitRanges', None) is not None: return self._nosplitRanges = nosplitRanges = {} for x in xrange(self._ncols): for y in xrange(self._nrows): nosplitRanges[x,y] = (x, y, x, y) self._colNoSplitCells = [] self._rowNoSplitCells = [] csa = self._colNoSplitCells.append rsa = self._rowNoSplitCells.append for (cmd, start, stop) in self._nosplitCmds: x0, y0 = start x1, y1 = stop if x0!=x1 or y0!=y1: #column span if x0!=x1: for y in xrange(y0, y1+1): for x in xrange(x0,x1+1): csa((x,y)) #row span if y0!=y1: for y in xrange(y0, y1+1): for x in xrange(x0,x1+1): rsa((x,y)) for y in xrange(y0, y1+1): for x in xrange(x0,x1+1): nosplitRanges[x,y] = None # set the main entry nosplitRanges[x0,y0] = (x0, y0, x1, y1) def _calcSpanRects(self): """ Work out rects for tables which do row and column spanning. Based on self._spanRanges, which is already known, and the widths which were given or previously calculated, self._spanRects shows the real coords for drawing: (col, row) -> (x, y, width, height) for each cell. Any cell which 'does not exist' as another has spanned over it will get a None entry on the right. This method generates relative positions so its results cannot be reused after split. """ if getattr(self,'_spanRects',None): return colpositions = self._colpositions rowpositions = self._rowpositions self._spanRects = spanRects = {} self._vBlocks = vBlocks = {} self._hBlocks = hBlocks = {} for (coord, value) in self._spanRanges.items(): if value is None: spanRects[coord] = None else: col,row = coord # Testing row for visibility should be enough since no splits # are permitted across spanned areas. if not self._is_visible_row(row): continue col0, row0, col1, row1 = value row0 = self._abs_to_vis(row0) row1 = self._abs_to_vis(row1) if col1-col0>0: for _ in xrange(col0+1,col1+1): vBlocks.setdefault(colpositions[_],[]).append((rowpositions[row1+1],rowpositions[row0])) if row1-row0>0: for _ in xrange(row0+1,row1+1): hBlocks.setdefault(rowpositions[_],[]).append((colpositions[col0],colpositions[col1+1])) x = colpositions[col0] y = rowpositions[row1+1] width = colpositions[col1+1] - x height = rowpositions[row0] - y spanRects[coord] = (x, y, width, height) for _ in hBlocks, vBlocks: for value in _.values(): value.sort() def setStyle(self, tblstyle): if not isinstance(tblstyle,TableStyle): tblstyle = TableStyle(tblstyle) for cmd in tblstyle.getCommands(): self._addCommand(cmd) for k,v in tblstyle._opts.items(): setattr(self,k,v) for a in ('spaceBefore','spaceAfter'): if not hasattr(self,a) and hasattr(tblstyle,a): setattr(self,a,getattr(tblstyle,a)) def _normalizeCoord(self, sc, ec, sr, er): """ Normalizes cols/rows coordinates. """ if sc < 0: sc = sc + self._ncols if ec < 0: ec = ec + self._ncols if sr < 0: sr = sr + self._nrows if er < 0: er = er + self._nrows return sc, ec, sr, er def _addCommand(self,cmd): if cmd[0] in ('BACKGROUND','ROWBACKGROUNDS','COLBACKGROUNDS'): op, (sc, sr), (ec, er), arg = cmd sc, ec, sr, er = self._normalizeCoord(sc, ec, sr, er) cmd = (op, (sc, sr), (ec, er), arg) self._bkgrndcmds.append(cmd) elif cmd[0] == 'SPAN': op, (sc, sr), (ec, er) = cmd sc, ec, sr, er = self._normalizeCoord(sc, ec, sr, er) if sc > ec: sc, ec = ec, sc if sr > er: sr, er = er, sr cmd = (op, (sc, sr), (ec, er)) self._spanCmds.append(cmd) elif cmd[0] == 'NOSPLIT': op, (sc, sr), (ec, er) = cmd sc, ec, sr, er = self._normalizeCoord(sc, ec, sr, er) if sc > ec: sc, ec = ec, sc if sr > er: sr, er = er, sr cmd = (op, (sc, sr), (ec, er)) self._nosplitCmds.append(cmd) elif _isLineCommand(cmd): # we expect op, start, stop, weight, colour, cap, dashes, join cmd = list(cmd) if len(cmd)<5: raise ValueError('bad line command '+str(cmd)) #determine line cap value at position 5. This can be str or numeric. if len(cmd)<6: cmd.append(1) else: cap = _convert2int(cmd[5], LINECAPS, 0, 2, 'cap', cmd) cmd[5] = cap #dashes at index 6 - this is a dash array: if len(cmd)<7: cmd.append(None) #join mode at index 7 - can be str or numeric, look up as for caps if len(cmd)<8: cmd.append(1) else: join = _convert2int(cmd[7], LINEJOINS, 0, 2, 'join', cmd) cmd[7] = join #linecount at index 8. Default is 1, set to 2 for double line. if len(cmd)<9: cmd.append(1) else: lineCount = cmd[8] if lineCount is None: lineCount = 1 cmd[8] = lineCount assert lineCount >= 1 #linespacing at index 9. Not applicable unless 2+ lines, defaults to line #width so you get a visible gap between centres if len(cmd)<10: cmd.append(cmd[3]) else: space = cmd[9] if space is None: space = cmd[3] cmd[9] = space assert len(cmd) == 10 (op, (sc,sr), (ec,er), weight, color, cap, dash, join, count, space) = cmd[:] sc, ec, sr, er = self._normalizeCoord(sc, ec, sr, er) cmd = (op, (sc,sr), (ec,er), weight, color, cap, dash, join, count, space) self._linecmds.append(cmd) else: (op, (sc, sr), (ec, er)), values = cmd[:3] , cmd[3:] sc, ec, sr, er = self._normalizeCoord(sc, ec, sr, er) for i in xrange(sr, er+1): for j in xrange(sc, ec+1): _setCellStyle(self._cellStyles, i, j, op, values) def _drawLines(self): ccap, cdash, cjoin = None, None, None self.canv.saveState() for op, (sc,sr), (ec,er), weight, color, cap, dash, join, count, space in self._linecmds: if isinstance(sr,basestring) and sr.startswith('split'): continue if cap!=None and ccap!=cap: self.canv.setLineCap(cap) ccap = cap if dash is None or dash == []: if cdash is not None: self.canv.setDash() cdash = None elif dash != cdash: self.canv.setDash(dash) cdash = dash if join is not None and cjoin!=join: self.canv.setLineJoin(join) cjoin = join getattr(self,_LineOpMap.get(op, '_drawUnknown' ))( (sc, sr), (ec, er), weight, color, count, space) self.canv.restoreState() self._curcolor = None def _drawUnknown(self, (sc, sr), (ec, er), weight, color, count, space): #we are only called from _drawLines which is one level up import sys op = sys._getframe(1).f_locals['op'] raise ValueError("Unknown line command '%s'" % op) def _is_visible_line(self, line_num): """ Checks if line is in visible area of table. """ activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible return (line_num <= self.repeatRows or activeRows0 <= line_num <= self._activeRows[1] or self._nrows - self._repeatRowsB <= line_num <= self._nrows) def _is_visible_row(self, row_num): """ Checks if row is in visible area of table. """ activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible return (row_num < self.repeatRows or activeRows0 <= row_num < self._activeRows[1] or self._nrows - self._repeatRowsB <= row_num < self._nrows) def _abs_to_vis(self, line_num): """ Translates absolute line positions to relative (visible positions). """ if line_num <= self.repeatRows: return line_num activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible if activeRows0 <= line_num <= self._activeRows[1]: line_num -= activeRows0 - self.repeatRows return line_num if self._nrows - self._repeatRowsB <= line_num <= self._nrows: line_num -= activeRows0 - self.repeatRows line_num -= self._nrows - self._repeatRowsB - self._activeRows[1] return line_num raise ValueError('`line_num` outside visible area!') def _vis_to_abs(self, line_num): """ Translates relative line positions to absolute. """ if line_num <= self.repeatRows: return line_num activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible line_num += activeRows0 - self.repeatRows if activeRows0 <= line_num <= self._activeRows[1]: return line_num line_num += self._nrows - self._repeatRowsB - self._activeRows[1] if self._nrows - self._repeatRowsB <= line_num <= self._nrows: return line_num raise ValueError('`line_num` outside visible area!') def _drawGrid(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole grid is outside visible area. if sr >= self.repeatRows and er < activeRows0: return if sr >= self._activeRows[1] and er < self._nrows - self._repeatRowsB: return # Some parts visible - rendering. self._drawBox( (sc, sr), (ec, er), weight, color, count, space) self._drawInnerGrid( (sc, sr), (ec, er), weight, color, count, space) def _drawBox(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole box is outside visible area. if sr >= self.repeatRows and er < activeRows0: return if sr >= self._activeRows[1] and er < self._nrows - self._repeatRowsB: return # Some parts visible - rendering. # If start row visible renders upper horizontal line. if self._is_visible_row(sr): self._drawHLines((sc, sr), (ec, sr), weight, color, count, space) # If end row visible renders lower horizontal line. if self._is_visible_row(er): self._drawHLines((sc, er+1), (ec, er+1), weight, color, count, space) # Renders vertical lines. self._drawVLines((sc, sr), (sc, er + 1), weight, color, count, space) self._drawVLines((ec+1, sr), (ec+1, er + 1), weight, color, count, space) def _drawInnerGrid(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole inner grid is outside visible area. if sr >= self.repeatRows and er < activeRows0: return if sr >= self._activeRows[1] and er < self._nrows - self._repeatRowsB: return # Some parts visible - rendering. self._drawHLines((sc, sr+1), (ec, er), weight, color, count, space) self._drawVLines((sc+1, sr), (ec, er + 1), weight, color, count, space) def _drawLineAbove(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole row range is outside visible area. if sr >= self.repeatRows and er < activeRows0: return if sr >= self._activeRows[1] and er < self._nrows - self._repeatRowsB: return # Some parts visible - searching for visible rows. visible = [] for i in xrange(sr, er + 1): if not self._is_visible_row(i): continue visible.append(i) # Generates line for each visible row. for vis in visible: self._drawHLines((sc, vis), (ec, vis), weight, color, count, space) def _drawLineBelow(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole row range is outside visible area. if sr >= self.repeatRows and er < activeRows0: return if sr >= self._activeRows[1] and er < self._nrows - self._repeatRowsB: return # Some parts visible - searching for visible rows. visible = [] for i in xrange(sr, er + 1): if not self._is_visible_row(i): continue visible.append(i) # Generates line for each visible row. for vis in visible: self._drawHLines((sc, vis + 1), (ec, vis +1), weight, color, count, space) def _prepLine(self, weight, color): if color != self._curcolor: self.canv.setStrokeColor(color) self._curcolor = color if weight != self._curweight: self.canv.setLineWidth(weight) self._curweight = weight def _drawHLines(self, (sc, sr), (ec, er), weight, color, count, space): ecp = self._colpositions[sc:ec+2] visible = [i for i in xrange(sr, er + 1) if self._is_visible_line(i)] rp_pos = [self._abs_to_vis(abs_num) for abs_num in visible] rp = [self._rowpositions[pos] for pos in rp_pos] if len(ecp)<=1 or len(rp)<1: return self._prepLine(weight, color) scp = ecp[0] ecp = ecp[-1] hBlocks = getattr(self,'_hBlocks',{}) canvLine = self.canv.line if count == 1: for y in rp: _hLine(canvLine, scp, ecp, y, hBlocks) else: lf = lambda x0,y0,x1,y1,canvLine=canvLine, ws=weight+space, count=count: _multiLine(x0,x1,y0,canvLine,ws,count) for y in rp: _hLine(lf, scp, ecp, y, hBlocks) def _drawVLines(self, (sc, sr), (ec, er), weight, color, count, space): visible = [i for i in xrange(sr, er + 1) if self._is_visible_line(i)] rp_pos = [self._abs_to_vis(abs_num) for abs_num in visible] erp = [self._rowpositions[pos] for pos in rp_pos] cp = self._colpositions[sc:ec+1] if len(erp)<=1 or len(cp)<1: return self._prepLine(weight, color) srp = erp[0] erp = erp[-1] vBlocks = getattr(self,'_vBlocks',{}) canvLine = lambda y0, x0, y1, x1, _line=self.canv.line: _line(x0,y0,x1,y1) if count == 1: for x in cp: _hLine(canvLine, erp, srp, x, vBlocks) else: lf = lambda x0,y0,x1,y1,canvLine=canvLine, ws=weight+space, count=count: _multiLine(x0,x1,y0,canvLine,ws,count) for x in cp: _hLine(lf, erp, srp, x, vBlocks) def _drawLineAfter(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole row range is outside visible area. if sr >= self.repeatRows and er + 1 < activeRows0: return if sr >= self._activeRows[1] and er + 1 < self._nrows - self._repeatRowsB: return # Some parts visible - rendering. self._drawVLines((sc + 1, sr), (ec + 1, er + 1), weight, color, count, space) def _drawLineBefore(self, (sc, sr), (ec, er), weight, color, count, space): activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible # Checks if whole row range is outside visible area. if sr >= self.repeatRows and er + 1 < activeRows0: return if sr >= self._activeRows[1] and er + 1 < self._nrows - self._repeatRowsB: return # Some parts visible - rendering. self._drawVLines((sc, sr), (ec, er + 1), weight, color, count, space) def wrap(self, availWidth, availHeight): self._calc(availWidth, availHeight) #nice and easy, since they are predetermined size self.availWidth = availWidth return (self._width, self._height) def onSplit(self,T,byRow=1): ''' This method will be called when the Table is split. Special purpose tables can override to do special stuff. ''' pass def _splitRows(self,availHeight): n=self._getFirstPossibleSplitRowPosition(availHeight) if n==0: return [] activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible lim = len(self._rowHeights[activeRows0:self._activeRows[1]]) if n==lim: return [self] R0 = self._copy() # We set what part of data is going to be visible. R0._activeRows = (activeRows0, activeRows0 + n) R1 = self._copy() # We set what part of data is going to be visible. R1._activeRows = (activeRows0 + n, self._activeRows[1]) self.onSplit(R0) self.onSplit(R1) return [R0,R1] def _getRowImpossible(impossible,cells,ranges): """ Marks row numbers where split is impossible due to span or nosplit commands. """ for xy in cells: r=ranges[xy] if r!=None: y1,y2=r[1],r[3] if y1!=y2: ymin=min(y1,y2) #normalize ymax=max(y1,y2) #normalize y=ymin while 1: if y>=ymax: break impossible[y]=None #split at position y is impossible because of overlapping rowspan y+=1 _getRowImpossible=staticmethod(_getRowImpossible) def _getFirstPossibleSplitRowPosition(self,availHeight): # Since impossible do not change after split, we try to reuse old data impossible = getattr(self, '_impossible', None) if impossible is None: impossible={} if self._spanCmds: self._getRowImpossible(impossible, self._rowSpanCells, self._spanRanges) if self._nosplitCmds: self._getRowImpossible(impossible, self._rowNoSplitCells, self._nosplitRanges) self._impossible = impossible h = sum(self._rowHeights[:self.repeatRows]) h += sum(self._rowHeights[self._nrows-self._repeatRowsB:]) split_at = 0 # from this point of view 0 is the first position where the table may *always* be splitted activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible for n, rh in enumerate(self._rowHeights[activeRows0:self._activeRows[1]]): if h+rh>availHeight: break if not impossible.has_key(self._vis_to_abs(n+self.repeatRows)): split_at=n + 1 h=h+rh return split_at def split(self, availWidth, availHeight): self._calc(availWidth, availHeight) if self.splitByRow: if not rl_config.allowTableBoundsErrors and self._width>availWidth: return [] return self._splitRows(availHeight) else: raise NotImplementedError def draw(self): self._curweight = self._curcolor = self._curcellstyle = None self._drawBkgrnd() activeRows0 = self._activeRows[0] if self._activeRows[0] is not None else self.repeatRows # ugly hack to make it backward compatible row_nums = (range(0, self.repeatRows) + range(activeRows0, self._activeRows[1]) + range(self._nrows-self._repeatRowsB, self._nrows)) if not self._spanCmds: # old fashioned case, no spanning, steam on and do each cell cellvalues = (self._cellvalues[:self.repeatRows] + self._cellvalues[activeRows0:self._activeRows[1]] + self._cellvalues[self._nrows-self._repeatRowsB:]) cellstyles = (self._cellStyles[:self.repeatRows] + self._cellStyles[activeRows0:self._activeRows[1]] + self._cellStyles[self._nrows-self._repeatRowsB:]) rowheights = (self._rowHeights[:self.repeatRows] + self._rowHeights[activeRows0:self._activeRows[1]] + self._rowHeights[self._nrows-self._repeatRowsB:]) for rowNo, row, rowstyle, rowpos, rowheight in zip(row_nums, cellvalues, cellstyles, self._rowpositions[1:], rowheights): for colNo, cellval, cellstyle, colpos, colwidth in zip( xrange(self._ncols), row, rowstyle, self._colpositions[:-1], self._colWidths): if isinstance(cellval, Formula): cellval = cellval(self._cellvalues, self.repeatRows, self._repeatRowsB, (activeRows0, self._activeRows[1]), (colNo, rowNo), cellstyle, colwidth) self._drawCell(cellval, cellstyle, (colpos, rowpos), (colwidth, rowheight)) else: # we have some row or col spans, need a more complex algorithm # to find the rect for each for rowNo in row_nums: for colNo in xrange(self._ncols): cellRect = self._spanRects[colNo, rowNo] if cellRect is not None: (x, y, width, height) = cellRect cellval = self._cellvalues[rowNo][colNo] cellstyle = self._cellStyles[rowNo][colNo] if isinstance(cellval, Formula): cellval = cellval(self._cellvalues, self.repeatRows, self._repeatRowsB, (activeRows0, self._activeRows[1]), (colNo, rowNo), cellstyle, width) self._drawCell(cellval, cellstyle, (x, y), (width, height)) self._drawLines() def _drawBkgrnd(self): nrows = self._nrows ncols = self._ncols canv = self.canv colpositions = self._colpositions rowpositions = self._rowpositions rowHeights = self._rowHeights colWidths = self._colWidths spanRects = getattr(self,'_spanRects',None) for cmd, (sc, sr), (ec, er), arg in self._bkgrndcmds: visible = [] for row_num in xrange(sr, er + 1): if not self._is_visible_row(row_num): continue visible.append(row_num) if not visible: continue sr = self._abs_to_vis(visible[0]) er = self._abs_to_vis(visible[-1]) x0 = colpositions[sc] y0 = rowpositions[sr] x1 = colpositions[min(ec+1,ncols)] y1 = rowpositions[er+1] w, h = x1-x0, y1-y0 if callable(arg): arg(self,canv, x0, y0, w, h) elif cmd == 'ROWBACKGROUNDS': #Need a list of colors to cycle through. The arguments #might be already colours, or convertible to colors, or # None, or the str 'None'. #It's very common to alternate a pale shade with None. colorCycle = map(colors.toColorOrNone, arg) count = len(colorCycle) rowCount = er - sr + 1 for i in xrange(rowCount): color = colorCycle[i%count] h = rowHeights[sr + i] if color: canv.setFillColor(color) canv.rect(x0, y0, w, -h, stroke=0,fill=1) y0 = y0 - h elif cmd == 'COLBACKGROUNDS': #cycle through colours columnwise colorCycle = map(colors.toColorOrNone, arg) count = len(colorCycle) colCount = ec - sc + 1 for i in xrange(colCount): color = colorCycle[i%count] w = colWidths[sc + i] if color: canv.setFillColor(color) canv.rect(x0, y0, w, h, stroke=0,fill=1) x0 = x0 +w else: #cmd=='BACKGROUND' color = colors.toColorOrNone(arg) if color: if ec==sc and er==sr and spanRects: xywh = spanRects.get((sc,sr)) if xywh: #it's a single cell x0, y0, w, h = xywh canv.setFillColor(color) canv.rect(x0, y0, w, h, stroke=0,fill=1) def _drawCell(self, cellval, cellstyle, (colpos, rowpos), (colwidth, rowheight)): if self._curcellstyle is not cellstyle: cur = self._curcellstyle if cur is None or cellstyle.color != cur.color: self.canv.setFillColor(cellstyle.color) if cur is None or cellstyle.leading != cur.leading or cellstyle.fontname != cur.fontname or cellstyle.fontsize != cur.fontsize: self.canv.setFont(cellstyle.fontname, cellstyle.fontsize, cellstyle.leading) self._curcellstyle = cellstyle just = cellstyle.alignment valign = cellstyle.valign if isinstance(cellval,(tuple,list,Flowable)): if not isinstance(cellval,(tuple,list)): cellval = (cellval,) # we assume it's a list of Flowables W = [] H = [] w, h = self._listCellGeom(cellval,colwidth,cellstyle,W=W, H=H,aH=rowheight) if valign=='TOP': y = rowpos + rowheight - cellstyle.topPadding elif valign=='BOTTOM': y = rowpos+cellstyle.bottomPadding + h else: y = rowpos+(rowheight+cellstyle.bottomPadding-cellstyle.topPadding+h)/2.0 if cellval: y += cellval[0].getSpaceBefore() for v, w, h in zip(cellval,W,H): if just=='LEFT': x = colpos+cellstyle.leftPadding elif just=='RIGHT': x = colpos+colwidth-cellstyle.rightPadding - w elif just in ('CENTRE', 'CENTER'): x = colpos+(colwidth+cellstyle.leftPadding-cellstyle.rightPadding-w)/2.0 else: raise ValueError('Invalid justification %s' % just) y -= v.getSpaceBefore() y -= h v.drawOn(self.canv,x,y) y -= v.getSpaceAfter() else: if just == 'LEFT': draw = self.canv.drawString x = colpos + cellstyle.leftPadding elif just in ('CENTRE', 'CENTER'): draw = self.canv.drawCentredString x = colpos+(colwidth+cellstyle.leftPadding-cellstyle.rightPadding)*0.5 elif just == 'RIGHT': draw = self.canv.drawRightString x = colpos + colwidth - cellstyle.rightPadding elif just == 'DECIMAL': draw = self.canv.drawAlignedString x = colpos + colwidth - cellstyle.rightPadding else: raise ValueError('Invalid justification %s' % just) vals = str(cellval).split("\n") n = len(vals) leading = cellstyle.leading fontsize = cellstyle.fontsize if valign=='BOTTOM': y = rowpos + cellstyle.bottomPadding+n*leading-fontsize elif valign=='TOP': y = rowpos + rowheight - cellstyle.topPadding - fontsize elif valign=='MIDDLE': #tim roberts pointed out missing fontsize correction 2004-10-04 y = rowpos + (cellstyle.bottomPadding + rowheight-cellstyle.topPadding+n*leading)/2.0 - fontsize else: raise ValueError("Bad valign: '%s'" % str(valign)) for v in vals: draw(x, y, v) y -= leading onDraw = getattr(cellval,'onDraw',None) if onDraw: onDraw(self.canv,cellval.kind,cellval.label) if cellstyle.href: #external hyperlink self.canv.linkURL(cellstyle.href, (colpos, rowpos, colpos + colwidth, rowpos + rowheight), relative=1) if cellstyle.destination: #external hyperlink self.canv.linkRect("", cellstyle.destination, Rect=(colpos, rowpos, colpos + colwidth, rowpos + rowheight), relative=1) def _copy(self): """ Makes copy of self. """ shadow = self.__class__(data = self._cellvalues, colWidths = self._colWidths, rowHeights = self._rowHeights, repeatRows = self.repeatRows, repeatCols = self.repeatCols, splitByRow = self.splitByRow, normalizedData = 1, cellStyles = self._cellStyles, activeRows = self._activeRows, repeatRowsB = self._repeatRowsB, hAlign = self.hAlign, vAlign = self.vAlign, ident = self.ident) # copy the commands shadow._linecmds = self._linecmds shadow._bkgrndcmds = self._bkgrndcmds shadow._spanCmds = self._spanCmds shadow._nosplitCmds = self._nosplitCmds # copy span related data if getattr(self, '_spanRanges', None) is not None: shadow._spanRanges = self._spanRanges shadow._colSpanCells = self._colSpanCells shadow._rowSpanCells = self._rowSpanCells # copy nosplit related data if getattr(self, '_nosplitRanges', None) is not None: shadow._nosplitRanges = self._nosplitRanges shadow._colNoSplitCells = self._colNoSplitCells shadow._rowNoSplitCells = self._rowNoSplitCells shadow._impossible = getattr(self, '_impossible', None) return shadow _LineOpMap = { 'GRID':'_drawGrid', 'BOX':'_drawBox', 'OUTLINE':'_drawBox', 'INNERGRID':'_drawInnerGrid', 'LINEBELOW':'_drawLineBelow', 'LINEABOVE':'_drawLineAbove', 'LINEBEFORE':'_drawLineBefore', 'LINEAFTER':'_drawLineAfter', } class Formula(object): """ Abstract class of all formulas. """ NO_ENOUGH_SPACE = '###' def __init__(self, longest_value=NO_ENOUGH_SPACE, ignore_no_enough_space=True): if not isinstance(longest_value, str): raise TypeError('Formula longest_value must be str!') if len(longest_value) < 3: raise ValueError('longest_value must have at least 3 characters!') # This value will be used to determine cell width during Table's # self._calc_width. self._longest_value = longest_value self._ignore_no_enough_space = ignore_no_enough_space def __call__(self, data, repeat_rows, repeat_rows_b, active_rows, cell_coord, cell_style, cell_width): """ Returns tuple of evaluated value. First position is value to be drawn, second real evaluated value. First position can contain ### instead of real value if there is not enough space to draw it. Second position should be used by other formulas since it's always contains real data. """ value = self._evaluate(data, repeat_rows, repeat_rows_b, active_rows, cell_coord) value_width = stringWidth(value, cell_style.fontname, cell_style.fontsize) cell_width -= cell_style.leftPadding + cell_style.rightPadding if value_width > cell_width: if not self._ignore_no_enough_space: raise ValueError('Formula value won\'t fit into cell!') value = self.NO_ENOUGH_SPACE return value def get_max_width(self, cell_style): """ Returns length of longest_value based on cell_style information. """ width = stringWidth(self._longest_value, cell_style.fontname, cell_style.fontsize) return width def _evaluate(self, data, repeat_rows, repeat_rows_b, active_rows, cell_coord): """ This method should return evaluated string value. """ raise NotImplementedError class PageColSum(Formula): """ Calculates sum of column from current page only. """ def __init__(self, ignore_convert_errors=True, longest_value='100.00'): Formula.__init__(self, longest_value) self._ignore = ignore_convert_errors def _evaluate(self, data, repeat_rows, repeat_rows_b, active_rows, cell_coord): """ Calculates sum of column up to current formula coordinates. All data will be converted to decimals. Unconvertable values can be ignored or cause to raise Exception depending of settings. """ # Takes slice of data which will be used in evaluation. cell_row = cell_coord[1] if active_rows[0] <= cell_row < active_rows[1]: raise ValueError('Formula inside range to be evaluated!') active_data = data[active_rows[0]:active_rows[1]] col_num = cell_coord[0] sum = D(0) for row_num, row in enumerate(active_data): col_value = row[col_num] if isinstance(col_value, Formula): col_value = col_value._evaluate(data, repeat_rows, repeat_rows_b, active_rows, (col_num, row_num + active_rows[0])) try: value = D(col_value) except DConversionError: if not self._ignore: raise continue sum += value return str(sum) class RowSum(Formula): """ Calculates sum of row values left of Forumula class. """ def __init__(self, ignore_convert_errors=True, longest_value='100.00'): Formula.__init__(self, longest_value) self._ignore = ignore_convert_errors def _evaluate(self, data, repeat_rows, repeat_rows_b, active_rows, cell_coord): """ Calculates sum of row values left of formula coordinates. All data will be converted to decimals. Unconvertable values can be ignored or cause to raise Exception depending of settings. """ sum = D(0) row_num = cell_coord[1] row = data[row_num] for col_num, col_value in enumerate(row[:cell_coord[0]]): if isinstance(col_value, Formula): col_value = col_value._evaluate(data, repeat_rows, repeat_rows_b, active_rows, (col_num, row_num)) try: value = D(col_value) except DConversionError: if not self._ignore: raise continue sum += value return str(sum) if __name__ == '__main__': import time from reportlab.lib.pagesizes import A4 from reportlab.platypus import BaseDocTemplate, Frame, PageTemplate from reportlab.lib.units import mm from reportlab.platypus.flowables import PageBreak, Spacer from reportlab.platypus.paragraph import Paragraph from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle styleSheet = getSampleStyleSheet() MARGIN_SIZE = 25 * mm PAGE_SIZE = A4 def create_pdfdoc(pdfdoc, story): """ Creates PDF doc from story. """ pdf_doc = BaseDocTemplate(pdfdoc, pagesize = PAGE_SIZE, leftMargin = MARGIN_SIZE, rightMargin = MARGIN_SIZE, topMargin = MARGIN_SIZE, bottomMargin = MARGIN_SIZE) main_frame = Frame(MARGIN_SIZE, MARGIN_SIZE, PAGE_SIZE[0] - 2 * MARGIN_SIZE, PAGE_SIZE[1] - 2 * MARGIN_SIZE, leftPadding = 0, rightPadding = 0, bottomPadding = 0, topPadding = 0, id = 'main_frame') main_template = PageTemplate(id = 'main_template', frames = [main_frame]) pdf_doc.addPageTemplates([main_template]) pdf_doc.build(story) table_style = [ ('GRID', (0,0), (-1,-1), 1, colors.black), ('ALIGN', (0,0), (-1,-1), 'CENTER'), ('LEFTPADDING', (0,0), (-1,-1), 3), ('RIGHTPADDING', (0,0), (-1,-1), 3), ('FONTNAME', (0,0), (-1,-1), 'Times-Bold'), ('FONTNAME', (1,1), (-2,-2), 'Times-Roman'), ('FONTSIZE', (0,0), (-1,-1), 10) ] data = [ ['', 'Col 1', 'Col 2', 'Col3', 'Row sum'], ['Row 1', 999991, 2, 3, RowSum()], ['Row 2', 999994, 5, 6, RowSum()], ['Row 3', 999997, 8, 9, RowSum()], ['Row 3', 1, 8, 9, RowSum()], ['Row 4', 2, 8, 9, RowSum()], ['Row 5', 3, 8, 9, RowSum()], ['Row 6', 4, 8, 9, RowSum()], ['Row 7', 5, 8, 9, RowSum()], ['Row 8', 6, 8, 9, RowSum()], ['Row 9', 7, 8, 9, RowSum()], ['Row 10', 8, 8, 9, RowSum()], ['Row 11', 9, 8, 9, RowSum()], ['Row 12', 1, 9, 9, RowSum()], ['Row 13', 2, 9, 9, RowSum()], ['Page col sum', PageColSum(), PageColSum(), PageColSum(), PageColSum()], ] spreadsheet_table = SpreadsheetTable(data, repeatRows = 1, repeatRowsB = 1) spreadsheet_table.setStyle(table_style) print 'Generating Table to spreadsheet.pdf in current working directiory' story = [] story.append(Paragraph("This shows how formulas behave without split. Notice that col sum formula for col 1 detected not enough space to draw itself so returned ### instead of value.", styleSheet['BodyText'])) story.append(Spacer(0, 10 * mm)) story.append(spreadsheet_table) story.append(PageBreak()) story.append(Paragraph("This shows how formulas behave with split.", styleSheet['BodyText'])) story.append(Spacer(0, 10 * mm)) spreadsheet_table = SpreadsheetTable(data, repeatRows = 1, repeatRowsB = 1) spreadsheet_table.setStyle(table_style) s = spreadsheet_table.split(PAGE_SIZE[0], 90) for part in s: story.append(part) story.append(Spacer(0, 10 * mm)) create_pdfdoc('spreadsheet.pdf', story)